[PDF] Embeddings In Natural Language Processing - eBooks Review

Embeddings In Natural Language Processing


Embeddings In Natural Language Processing
DOWNLOAD

Download Embeddings In Natural Language Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Embeddings In Natural Language Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Embeddings In Natural Language Processing


Embeddings In Natural Language Processing
DOWNLOAD
Author : Mohammad Taher Pilehvar
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Embeddings In Natural Language Processing written by Mohammad Taher Pilehvar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.



Embeddings In Natural Language Processing


Embeddings In Natural Language Processing
DOWNLOAD
Author : Mohammad Taher Pilehvar
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2020-11-13

Embeddings In Natural Language Processing written by Mohammad Taher Pilehvar and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-13 with Computers categories.


Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.



Natural Language Processing And Chinese Computing


Natural Language Processing And Chinese Computing
DOWNLOAD
Author : Xiaodan Zhu
language : en
Publisher: Springer Nature
Release Date : 2020-10-05

Natural Language Processing And Chinese Computing written by Xiaodan Zhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-05 with Computers categories.


This two-volume set of LNAI 12340 and LNAI 12341 constitutes the refereed proceedings of the 9th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2020, held in Zhengzhou, China, in October 2020. The 70 full papers, 30 poster papers and 14 workshop papers presented were carefully reviewed and selected from 320 submissions. They are organized in the following areas: Conversational Bot/QA; Fundamentals of NLP; Knowledge Base, Graphs and Semantic Web; Machine Learning for NLP; Machine Translation and Multilinguality; NLP Applications; Social Media and Network; Text Mining; and Trending Topics.



Natural Language Processing Cookbook


Natural Language Processing Cookbook
DOWNLOAD
Author : Rosario Moscato
language : en
Publisher: BPB Publications
Release Date : 2025-02-26

Natural Language Processing Cookbook written by Rosario Moscato and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-26 with Computers categories.


DESCRIPTION Natural language processing (NLP) is revolutionizing how machines understand and interact with human language, creating powerful applications from chatbots to text analytics. This provides a practical, hands-on approach to mastering these technologies, making complex NLP concepts accessible through step-by-step recipes and real-world examples. This book walks you through the world of teaching computers to understand human language, starting with the basics and building up to advanced techniques. You will learn how to break down text into meaningful pieces, use Python programming to handle text data, and clean up messy text for analysis. The book shows you how computers can understand the meaning behind words using methods like word embeddings and BERT. You will discover how to identify parts of speech and recognize names of people and places in text, and how to sort text into different categories using ML. Advanced topics include finding hidden themes in document collections, building chatbots that can have conversations, and creating visual representations of text data. Throughout the book, practical Python examples help you implement these techniques while considering how to evaluate and deploy real-world NLP systems. By the time you complete this book, you will possess the technical proficiency to implement complete NLP pipelines from preprocessing to deployment. The recipe-based approach ensures you can immediately apply these techniques to solve real business problems. KEY FEATURES ● Step-by-step approach for each technique, with practical examples to fully master NLP. ● Add value to your data by mastering the most important NLP techniques. ● Readily usable recipes for implementing basic tasks like data cleaning and tokenization to more complicated neural network implementations. WHAT YOU WILL LEARN ● Preprocess and clean text for accurate NLP model performance. ● Apply ML techniques for text classification tasks. ● Extract key insights using semantic analysis and embeddings. ● Develop and fine-tune topic modeling algorithms. ● Build intelligent chatbots with dialogue management and intent detection. ● Visualize text data with word clouds and entity graphs. WHO THIS BOOK IS FOR This book is ideal for data scientists, programmers, business analysts, and students with basic Python knowledge who want to build practical NLP skills. Whether you are an AI enthusiast looking to enter the field or a professional seeking to add language processing capabilities to your toolkit, you will find actionable recipes that bridge theory and application. TABLE OF CONTENTS 1. Getting Started with NLP 2. Python for Text Processing 3. Text Processing and Cleaning 4. Semantic Representation 5. Part-of-speech Tagging and Named Entity Recognition 6. Text Classification 7. Advanced Techniques for Topic Modeling 8. Building a Chatbot 9. Text Data Visualization Techniques 10. Conclusion and Takeaways



A Handbook Of Computational Linguistics Artificial Intelligence In Natural Language Processing


A Handbook Of Computational Linguistics Artificial Intelligence In Natural Language Processing
DOWNLOAD
Author : Youddha Beer Singh
language : en
Publisher: Bentham Science Publishers
Release Date : 2024-08-12

A Handbook Of Computational Linguistics Artificial Intelligence In Natural Language Processing written by Youddha Beer Singh and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-12 with Computers categories.


This handbook provides a comprehensive understanding of computational linguistics, focusing on the integration of deep learning in natural language processing (NLP). 18 edited chapters cover the state-of-the-art theoretical and experimental research on NLP, offering insights into advanced models and recent applications. Highlights: - Foundations of NLP: Provides an in-depth study of natural language processing, including basics, challenges, and applications. - Advanced NLP Techniques: Explores recent advancements in text summarization, machine translation, and deep learning applications in NLP. - Practical Applications: Demonstrates use cases on text identification from hazy images, speech-to-sign language translation, and word sense disambiguation using deep learning. - Future Directions: Includes discussions on the future of NLP, including transfer learning, beyond syntax and semantics, and emerging challenges. Key Features: - Comprehensive coverage of NLP and deep learning integration. - Practical insights into real-world applications - Detailed exploration of recent research and advancements through 16 easy to read chapters - References and notes on experimental methods used for advanced readers Ideal for researchers, students, and professionals, this book offers a thorough understanding of computational linguistics by equipping readers with the knowledge to understand how computational techniques are applied to understand text, language and speech.



Natural Language Processing With Python


Natural Language Processing With Python
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-16

Natural Language Processing With Python written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-16 with Computers categories.


Learn NLP with Python through practical exercises, advanced topics like transformers, and real-world projects such as chatbots and dashboards. A comprehensive guide for mastering NLP techniques. Key Features A comprehensive guide to processing, analyzing, and modeling human language with Python Real-world projects that reinforce NLP concepts, including chatbot design and sentiment analysis Foundational and advanced NLP techniques for practical applications in diverse domains Book DescriptionEmbark on a comprehensive journey to master natural language processing (NLP) with Python. Begin with foundational concepts like text preprocessing, tokenization, and key Python libraries such as NLTK, spaCy, and TextBlob. Explore the challenges of text data and gain hands-on experience in cleaning, tokenizing, and building basic NLP pipelines. Early chapters provide practical exercises to solidify your understanding of essential techniques. Advance to sophisticated topics like feature engineering using Bag of Words, TF-IDF, and embeddings like Word2Vec and BERT. Delve into language modeling with RNNs, syntax parsing, and sentiment analysis, learning to apply these techniques in real-world scenarios. Chapters on topic modeling and text summarization equip you to extract insights from data, while transformer-based models like BERT take your skills to the next level. Each concept is paired with Python-based examples, ensuring practical mastery. The final chapters focus on real-world projects, such as developing chatbots, sentiment analysis dashboards, and news aggregators. These hands-on applications challenge you to design, train, and deploy robust NLP solutions. With its structured approach and practical focus, this book equips you to confidently tackle real-world NLP challenges and innovate in the field.What you will learn Clean and preprocess text data using Python effectively Master tokenization techniques for words, sentences, and characters Build robust NLP pipelines with feature engineering methods Implement sentiment analysis with machine learning models Perform topic modeling using LDA, LSA, and other algorithms Develop chatbots and dashboards for real-world applications Who this book is for This book is ideal for students, researchers, and professionals in machine learning, data science, and artificial intelligence who want to master NLP. Beginners will benefit from the step-by-step introduction to text processing and feature engineering, while experienced practitioners can explore advanced topics like transformers and real-world projects. Basic knowledge of Python and familiarity with programming concepts are recommended to fully utilize the content. Enthusiasts with a passion for language technology will also find this guide valuable for building practical NLP applications.



A Practical Guide To Hybrid Natural Language Processing


A Practical Guide To Hybrid Natural Language Processing
DOWNLOAD
Author : Jose Manuel Gomez-Perez
language : en
Publisher: Springer Nature
Release Date : 2020-06-16

A Practical Guide To Hybrid Natural Language Processing written by Jose Manuel Gomez-Perez and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-16 with Computers categories.


This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks. Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter notebooks in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment. A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.



Natural Language Processing And Information Systems


Natural Language Processing And Information Systems
DOWNLOAD
Author : Elisabeth Métais
language : en
Publisher: Springer Nature
Release Date : 2021-06-19

Natural Language Processing And Information Systems written by Elisabeth Métais and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-19 with Computers categories.


This book constitutes the refereed proceedings of the 26th International Conference on Applications of Natural Language to Information Systems, NLDB 2021, held online in July 2021. The 19 full papers and 14 short papers were carefully reviewed and selected from 82 submissions. The papers are organized in the following topical sections: role of learning; methodological approaches; semantic relations; classification; sentiment analysis; social media; linking documents; multimodality; applications.



Natural Language Processing With Flair


Natural Language Processing With Flair
DOWNLOAD
Author : Tadej Magajna
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-04-29

Natural Language Processing With Flair written by Tadej Magajna and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-29 with Computers categories.


Learn how to solve practical NLP problems with the Flair Python framework, train sequence labeling models, work with text classifiers and word embeddings, and much more through hands-on practical exercises Key FeaturesBacked by the community and written by an NLP expertGet an understanding of basic NLP problems and terminologySolve real-world NLP problems with Flair with the help of practical hands-on exercisesBook Description Flair is an easy-to-understand natural language processing (NLP) framework designed to facilitate training and distribution of state-of-the-art NLP models for named entity recognition, part-of-speech tagging, and text classification. Flair is also a text embedding library for combining different types of embeddings, such as document embeddings, Transformer embeddings, and the proposed Flair embeddings. Natural Language Processing with Flair takes a hands-on approach to explaining and solving real-world NLP problems. You'll begin by installing Flair and learning about the basic NLP concepts and terminology. You will explore Flair's extensive features, such as sequence tagging, text classification, and word embeddings, through practical exercises. As you advance, you will train your own sequence labeling and text classification models and learn how to use hyperparameter tuning in order to choose the right training parameters. You will learn about the idea behind one-shot and few-shot learning through a novel text classification technique TARS. Finally, you will solve several real-world NLP problems through hands-on exercises, as well as learn how to deploy Flair models to production. By the end of this Flair book, you'll have developed a thorough understanding of typical NLP problems and you'll be able to solve them with Flair. What you will learnGain an understanding of core NLP terminology and conceptsGet to grips with the capabilities of the Flair NLP frameworkFind out how to use Flair's state-of-the-art pre-built modelsBuild custom sequence labeling models, embeddings, and classifiersLearn about a novel text classification technique called TARSDiscover how to build applications with Flair and how to deploy them to productionWho this book is for This Flair NLP book is for anyone who wants to learn about NLP through one of the most beginner-friendly, yet powerful Python NLP libraries out there. Software engineering students, developers, data scientists, and anyone who is transitioning into NLP and is interested in learning about practical approaches to solving problems with Flair will find this book useful. The book, however, is not recommended for readers aiming to get an in-depth theoretical understanding of the mathematics behind NLP. Beginner-level knowledge of Python programming is required to get the most out of this book.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2017-11-21

Deep Learning For Natural Language Processing written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Computers categories.


Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.