[PDF] Emerging Topics In Modeling Interval Censored Survival Data - eBooks Review

Emerging Topics In Modeling Interval Censored Survival Data


Emerging Topics In Modeling Interval Censored Survival Data
DOWNLOAD

Download Emerging Topics In Modeling Interval Censored Survival Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Emerging Topics In Modeling Interval Censored Survival Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Emerging Topics In Modeling Interval Censored Survival Data


Emerging Topics In Modeling Interval Censored Survival Data
DOWNLOAD
Author : Jianguo Sun
language : en
Publisher: Springer Nature
Release Date : 2022-11-29

Emerging Topics In Modeling Interval Censored Survival Data written by Jianguo Sun and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-29 with Mathematics categories.


This book primarily aims to discuss emerging topics in statistical methods and to booster research, education, and training to advance statistical modeling on interval-censored survival data. Commonly collected from public health and biomedical research, among other sources, interval-censored survival data can easily be mistaken for typical right-censored survival data, which can result in erroneous statistical inference due to the complexity of this type of data. The book invites a group of internationally leading researchers to systematically discuss and explore the historical development of the associated methods and their computational implementations, as well as emerging topics related to interval-censored data. It covers a variety of topics, including univariate interval-censored data, multivariate interval-censored data, clustered interval-censored data, competing risk interval-censored data, data with interval-censored covariates, interval-censored data from electric medical records, and misclassified interval-censored data. Researchers, students, and practitioners can directly make use of the state-of-the-art methods covered in the book to tackle their problems in research, education, training and consultation.



Multi State Survival Models For Interval Censored Data


Multi State Survival Models For Interval Censored Data
DOWNLOAD
Author : Ardo van den Hout
language : en
Publisher: CRC Press
Release Date : 2016-11-25

Multi State Survival Models For Interval Censored Data written by Ardo van den Hout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Mathematics categories.


Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.



The Statistical Analysis Of Interval Censored Failure Time Data


The Statistical Analysis Of Interval Censored Failure Time Data
DOWNLOAD
Author : Jianguo Sun
language : en
Publisher: Springer
Release Date : 2007-05-26

The Statistical Analysis Of Interval Censored Failure Time Data written by Jianguo Sun and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-26 with Mathematics categories.


This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.



Survival Analysis With Interval Censored Data


Survival Analysis With Interval Censored Data
DOWNLOAD
Author : Kris Bogaerts
language : en
Publisher: CRC Press
Release Date : 2017-11-20

Survival Analysis With Interval Censored Data written by Kris Bogaerts and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-20 with Mathematics categories.


Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society and editor of Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the Statistical Modelling Society, past-president of the International Society for Clinical Biostatistics, and fellow of ISI and ASA.



Bayesian Inference And Computation In Reliability And Survival Analysis


Bayesian Inference And Computation In Reliability And Survival Analysis
DOWNLOAD
Author : Yuhlong Lio
language : en
Publisher: Springer Nature
Release Date : 2022-08-01

Bayesian Inference And Computation In Reliability And Survival Analysis written by Yuhlong Lio and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-01 with Mathematics categories.


Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners. Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more. The included chapters present current methods, theories, and applications in the diverse area of biostatistical analysis. The volume as a whole serves as reference in driving quality global health research.



Monte Carlo Simulation Based Statistical Modeling


Monte Carlo Simulation Based Statistical Modeling
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: Springer
Release Date : 2017-02-01

Monte Carlo Simulation Based Statistical Modeling written by Ding-Geng (Din) Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-01 with Medical categories.


This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.



Statistical Topics In Health Economics And Outcomes Research


Statistical Topics In Health Economics And Outcomes Research
DOWNLOAD
Author : Demissie Alemayehu
language : en
Publisher: CRC Press
Release Date : 2017-11-22

Statistical Topics In Health Economics And Outcomes Research written by Demissie Alemayehu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.


With ever-rising healthcare costs, evidence generation through Health Economics and Outcomes Research (HEOR) plays an increasingly important role in decision-making about the allocation of resources. Accordingly, it is now customary for health technology assessment and reimbursement agencies to request for HEOR evidence, in addition to data from clinical trials, to inform decisions about patient access to new treatment options. While there is a great deal of literature on HEOR, there is a need for a volume that presents a coherent and unified review of the major issues that arise in application, especially from a statistical perspective. Statistical Topics in Health Economics and Outcomes Research fulfils that need by presenting an overview of the key analytical issues and best practice. Special attention is paid to key assumptions and other salient features of statistical methods customarily used in the area, and appropriate and relatively comprehensive references are made to emerging trends. The content of the book is purposefully designed to be accessible to readers with basic quantitative backgrounds, while providing an in-depth coverage of relatively complex statistical issues. The book will make a very useful reference for researchers in the pharmaceutical industry, academia, and research institutions involved with HEOR studies. The targeted readers may include statisticians, data scientists, epidemiologists, outcomes researchers, health economists, and healthcare policy and decision-makers.



Bayesian Thinking Modeling And Computation


Bayesian Thinking Modeling And Computation
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2005-11-29

Bayesian Thinking Modeling And Computation written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Mathematics categories.


This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics



Biostatistics In Biopharmaceutical Research And Development


Biostatistics In Biopharmaceutical Research And Development
DOWNLOAD
Author : Ding-Geng Chen
language : en
Publisher: Springer Nature
Release Date : 2024-12-24

Biostatistics In Biopharmaceutical Research And Development written by Ding-Geng Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-24 with Mathematics categories.


The Deming Conference on Applied Statistics has long been deemed an influential event in the biostatistics and biopharmaceutical profession. It provides learning experience on recent developments in statistical methodologies in biopharmaceutical applications and FDA regulations. This book honors 80 years of contributions and dedication of the Deming Conference in biostatistics, and biopharmaceutical clinical trial methodology and applications. All chapters are contributed by world-class and prominent Deming speakers, who've contributed their cutting-edge research and developments to the community. Volume 2 covers Biomarkers in Drug Development, Time-To-Event Data Analysis and Methods, and emerging development in biopharmaceutical biostatistics. This book aims to booster research, education, and training in biostatistics and in biopharmaceutical research and development.



Prior Processes And Their Applications


Prior Processes And Their Applications
DOWNLOAD
Author : Eswar G. Phadia
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-25

Prior Processes And Their Applications written by Eswar G. Phadia and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-25 with Mathematics categories.


This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the last four decades in order to deal with the Bayesian approach to solving some nonparametric inference problems. Applications of these priors in various estimation problems are presented. Starting with the famous Dirichlet process and its variants, the first part describes processes neutral to the right, gamma and extended gamma, beta and beta-Stacy, tail free and Polya tree, one and two parameter Poisson-Dirichlet, the Chinese Restaurant and Indian Buffet processes, etc., and discusses their interconnection. In addition, several new processes that have appeared in the literature in recent years and which are off-shoots of the Dirichlet process are described briefly. The second part contains the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data. Because of the conjugacy property of some of these processes, the resulting solutions are mostly in closed form. The third part treats similar problems but based on right censored data. Other applications are also included. A comprehensive list of references is provided in order to help readers explore further on their own.