[PDF] Empirical Approach To Machine Learning - eBooks Review

Empirical Approach To Machine Learning


Empirical Approach To Machine Learning
DOWNLOAD

Download Empirical Approach To Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Empirical Approach To Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Empirical Approach To Machine Learning


Empirical Approach To Machine Learning
DOWNLOAD
Author : Plamen P. Angelov
language : en
Publisher: Springer
Release Date : 2018-10-17

Empirical Approach To Machine Learning written by Plamen P. Angelov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-17 with Computers categories.


This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. Itcan also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code. Dimitar Filev, Henry Ford Technical Fellow, Ford Motor Company, USA, and Member of the National Academy of Engineering, USA: “The book Empirical Approach to Machine Learning opens new horizons to automated and efficient data processing.” Paul J. Werbos, Inventor of the back-propagation method, USA: “I owe great thanks to Professor Plamen Angelov for making this important material available to the community just as I see great practical needs for it, in the new area of making real sense of high-speed data from the brain.” Chin-Teng Lin, Distinguished Professor at University of Technology Sydney, Australia: “This new book will set up a milestone for the modern intelligent systems.” Edward Tunstel, President of IEEE Systems, Man, Cybernetics Society, USA: “Empirical Approach to Machine Learning provides an insightful and visionary boost of progress in the evolution of computational learning capabilities yielding interpretable and transparent implementations.”



Empirical Asset Pricing


Empirical Asset Pricing
DOWNLOAD
Author : Wayne Ferson
language : en
Publisher: MIT Press
Release Date : 2019-03-12

Empirical Asset Pricing written by Wayne Ferson and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-12 with Business & Economics categories.


An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.



Understanding Machine Learning


Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19

Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.


Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.



Machine Learning For Economics And Finance In Tensorflow 2


Machine Learning For Economics And Finance In Tensorflow 2
DOWNLOAD
Author : Isaiah Hull
language : en
Publisher: Apress
Release Date : 2020-11-26

Machine Learning For Economics And Finance In Tensorflow 2 written by Isaiah Hull and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Computers categories.


Work on economic problems and solutions with tools from machine learning. ML has taken time to move into the space of academic economics. This is because empirical work in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine learning is oriented towards prediction and is generally uninterested in either causality or parsimony. That leaves a gap for both students and professionals in the economics industry without a standard reference. This book focuses on economic problems with an empirical dimension, where machine learning methods may offer something of value. This includes coverage of a variety of discriminative deep learning models (DNNs, CNNs, RNNs, LSTMs, the Transformer Model, etc.), generative machine learning models, random forests, gradient boosting, clustering, and feature extraction. You'll also learn about the intersection of empirical methods in economics and machine learning, including regression analysis, text analysis, and dimensionality reduction methods, such as principal components analysis. TensorFlow offers a toolset that can be used to setup and solve any mathematical model, including those commonly used in economics. This book is structured to teach through a sequence of complete examples, each framed in terms of a specific economic problem of interest or topic. Otherwise complicated content is then distilled into accessible examples, so you can use TensorFlow to solve workhorse models in economics and finance. What You'll Learn Define, train, and evaluate machine learning models in TensorFlow 2 Apply fundamental concepts in machine learning, such as deep learning and natural language processing, to economic and financial problems Solve workhorse models in economics and finance Who This Book Is For Students and data scientists working in the economics industry. Academic economists and social scientists who have an interest in machine learning are also likely to find this book useful.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Nuria Oliver
language : en
Publisher: Springer Nature
Release Date : 2021-09-10

Machine Learning And Knowledge Discovery In Databases Research Track written by Nuria Oliver and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-10 with Computers categories.


The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Danai Koutra
language : en
Publisher: Springer Nature
Release Date : 2023-09-16

Machine Learning And Knowledge Discovery In Databases Research Track written by Danai Koutra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-16 with Computers categories.


The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. ​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.



Machine Learning Methods In The Environmental Sciences


Machine Learning Methods In The Environmental Sciences
DOWNLOAD
Author : William W. Hsieh
language : en
Publisher: Cambridge University Press
Release Date : 2009-07-30

Machine Learning Methods In The Environmental Sciences written by William W. Hsieh and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-30 with Computers categories.


A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Ulf Brefeld
language : en
Publisher: Springer Nature
Release Date : 2020-05-01

Machine Learning And Knowledge Discovery In Databases written by Ulf Brefeld and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-01 with Computers categories.


The three volume proceedings LNAI 11906 – 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. The contributions were organized in topical sections named as follows: Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization. Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing. Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track. Chapter "Incorporating Dependencies in Spectral Kernels for Gaussian Processes" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Engineering Applications Of Neural Networks


Engineering Applications Of Neural Networks
DOWNLOAD
Author : John Macintyre
language : en
Publisher: Springer
Release Date : 2019-05-14

Engineering Applications Of Neural Networks written by John Macintyre and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-14 with Computers categories.


This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2019, held in Xersonisos, Crete, Greece, in May 2019. The 35 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on AI in energy management - industrial applications; biomedical - bioinformatics modeling; classification - learning; deep learning; deep learning - convolutional ANN; fuzzy - vulnerability - navigation modeling; machine learning modeling - optimization; ML - DL financial modeling; security - anomaly detection; 1st PEINT workshop.