[PDF] Engineering Analytics - eBooks Review

Engineering Analytics


Engineering Analytics
DOWNLOAD

Download Engineering Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Engineering Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Engineering Analytics


Engineering Analytics
DOWNLOAD
Author : Luis Rabelo
language : en
Publisher: CRC Press
Release Date : 2021-09-26

Engineering Analytics written by Luis Rabelo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-26 with Business & Economics categories.


Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.



Principles Of Marketing Engineering 2nd Edition


Principles Of Marketing Engineering 2nd Edition
DOWNLOAD
Author : Gary L. Lilien
language : en
Publisher: DecisionPro
Release Date : 2013

Principles Of Marketing Engineering 2nd Edition written by Gary L. Lilien and has been published by DecisionPro this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Business & Economics categories.


The 21st century business environment demands more analysis and rigor in marketing decision making. Increasingly, marketing decision making resembles design engineering-putting together concepts, data, analyses, and simulations to learn about the marketplace and to design effective marketing plans. While many view traditional marketing as art and some view it as science, the new marketing increasingly looks like engineering (that is, combining art and science to solve specific problems). Marketing Engineering is the systematic approach to harness data and knowledge to drive effective marketing decision making and implementation through a technology-enabled and model-supported decision process. (For more information on Excel-based models that support these concepts, visit DecisionPro.biz.) We have designed this book primarily for the business school student or marketing manager, who, with minimal background and technical training, must understand and employ the basic tools and models associated with Marketing Engineering. We offer an accessible overview of the most widely used marketing engineering concepts and tools and show how they drive the collection of the right data and information to perform the right analyses to make better marketing plans, better product designs, and better marketing decisions. What's New In the 2nd Edition While much has changed in the nearly five years since the first edition of Principles of Marketing Engineering was published, much has remained the same. Hence, we have not changed the basic structure or contents of the book. We have, however Updated the examples and references. Added new content on customer lifetime value and customer valuation methods. Added several new pricing models. Added new material on "reverse perceptual mapping" to describe some exciting enhancements to our Marketing Engineering for Excel software. Provided some new perspectives on the future of Marketing Engineering. Provided better alignment between the content of the text and both the software and cases available with Marketing Engineering for Excel 2.0.



Data Analytics For Engineering And Construction Project Risk Management


Data Analytics For Engineering And Construction Project Risk Management
DOWNLOAD
Author : Ivan Damnjanovic
language : en
Publisher:
Release Date : 2020-07-31

Data Analytics For Engineering And Construction Project Risk Management written by Ivan Damnjanovic and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Engineering categories.


This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts' judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.



Enterprise Big Data Engineering Analytics And Management


Enterprise Big Data Engineering Analytics And Management
DOWNLOAD
Author : Atzmueller, Martin
language : en
Publisher: IGI Global
Release Date : 2016-06-01

Enterprise Big Data Engineering Analytics And Management written by Atzmueller, Martin and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-01 with Computers categories.


The significance of big data can be observed in any decision-making process as it is often used for forecasting and predictive analytics. Additionally, big data can be used to build a holistic view of an enterprise through a collection and analysis of large data sets retrospectively. As the data deluge deepens, new methods for analyzing, comprehending, and making use of big data become necessary. Enterprise Big Data Engineering, Analytics, and Management presents novel methodologies and practical approaches to engineering, managing, and analyzing large-scale data sets with a focus on enterprise applications and implementation. Featuring essential big data concepts including data mining, artificial intelligence, and information extraction, this publication provides a platform for retargeting the current research available in the field. Data analysts, IT professionals, researchers, and graduate-level students will find the timely research presented in this publication essential to furthering their knowledge in the field.



Engineering Analytics


Engineering Analytics
DOWNLOAD
Author : Luis Rabelo
language : en
Publisher: CRC Press
Release Date : 2021-09-27

Engineering Analytics written by Luis Rabelo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-27 with Technology & Engineering categories.


Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data.



Analytics Engineering With Sql And Dbt


Analytics Engineering With Sql And Dbt
DOWNLOAD
Author : Rui Pedro Machado
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-12-08

Analytics Engineering With Sql And Dbt written by Rui Pedro Machado and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-08 with Computers categories.


With the shift from data warehouses to data lakes, data now lands in repositories before it's been transformed, enabling engineers to model raw data into clean, well-defined datasets. dbt (data build tool) helps you take data further. This practical book shows data analysts, data engineers, BI developers, and data scientists how to create a true self-service transformation platform through the use of dynamic SQL. Authors Rui Machado from Monstarlab and Hélder Russa from Jumia show you how to quickly deliver new data products by focusing more on value delivery and less on architectural and engineering aspects. If you know your business well and have the technical skills to model raw data into clean, well-defined datasets, you'll learn how to design and deliver data models without any technical influence. With this book, you'll learn: What dbt is and how a dbt project is structured How dbt fits into the data engineering and analytics worlds How to collaborate on building data models The main tools and architectures for building useful, functional data models How to fit dbt into data warehousing and laking architecture How to build tests for data transformations



Feature Engineering For Machine Learning And Data Analytics


Feature Engineering For Machine Learning And Data Analytics
DOWNLOAD
Author : Guozhu Dong
language : en
Publisher: CRC Press
Release Date : 2018-03-14

Feature Engineering For Machine Learning And Data Analytics written by Guozhu Dong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-14 with Business & Economics categories.


Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.



Analytics For The Sharing Economy


Analytics For The Sharing Economy
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2020

Analytics For The Sharing Economy written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Cooperation categories.


The book provides an encompassing overview of all aspects relating to the sharing economy paradigm in different fields of study, and shows the ongoing research efforts in filling previously identified gaps in understanding in this area. Control and optimization analytics for the sharing economy explores bespoke analytics, tools, and business models that can be used to help design collaborative consumption services (the shared economy). It provides case studies of collaborative consumption in the areas of energy and mobility. The contributors review successful examples of sharing systems, and explore the theory for designing effective and stable shared-economy models. They discuss recent innovations in and uses of shared economy models in niche areas, such as energy and mobility. Readers learn the scientific challenging issues associated with the realization of a sharing economy. Conceptual and practical matters are examined, and the state-of-the-art tools and techniques to address such applications are explained. The contributors also show readers how topical problems in engineering, such as energy consumption in power grids, or bike sharing in transportation networks, can be formulated and solved from a general collaborative consumption perspective. Since the book takes a mathematical perspective to the topic, researchers in business, computer science, optimization and control find it useful. Practitioners also use the book as a point of reference, as it explores and investigates the analytics behind economy sharing.



Data Analytics In Biomedical Engineering And Healthcare


Data Analytics In Biomedical Engineering And Healthcare
DOWNLOAD
Author : Kun Chang Lee
language : en
Publisher: Academic Press
Release Date : 2020-10-18

Data Analytics In Biomedical Engineering And Healthcare written by Kun Chang Lee and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-18 with Science categories.


Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks