Essential Guide To Llmops

DOWNLOAD
Download Essential Guide To Llmops PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Essential Guide To Llmops book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Essential Guide To Llmops
DOWNLOAD
Author : RYAN. DOAN
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-07-31
Essential Guide To Llmops written by RYAN. DOAN and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-31 with Computers categories.
Unlock the secrets to mastering LLMOps with innovative approaches to streamline AI workflows, improve model efficiency, and ensure robust scalability, revolutionizing your language model operations from start to finish Key Features Gain a comprehensive understanding of LLMOps, from data handling to model governance Leverage tools for efficient LLM lifecycle management, from development to maintenance Discover real-world examples of industry cutting-edge trends in generative AI operation Purchase of the print or Kindle book includes a free PDF eBook Book Description The rapid advancements in large language models (LLMs) bring significant challenges in deployment, maintenance, and scalability. This Essential Guide to LLMOps provides practical solutions and strategies to overcome these challenges, ensuring seamless integration and the optimization of LLMs in real-world applications. This book takes you through the historical background, core concepts, and essential tools for data analysis, model development, deployment, maintenance, and governance. You’ll learn how to streamline workflows, enhance efficiency in LLMOps processes, employ LLMOps tools for precise model fine-tuning, and address the critical aspects of model review and governance. You’ll also get to grips with the practices and performance considerations that are necessary for the responsible development and deployment of LLMs. The book equips you with insights into model inference, scalability, and continuous improvement, and shows you how to implement these in real-world applications. By the end of this book, you’ll have learned the nuances of LLMOps, including effective deployment strategies, scalability solutions, and continuous improvement techniques, equipping you to stay ahead in the dynamic world of AI. What you will learn Understand the evolution and impact of LLMs in AI Differentiate between LLMOps and traditional MLOps Utilize LLMOps tools for data analysis, preparation, and fine-tuning Master strategies for model development, deployment, and improvement Implement techniques for model inference, serving, and scalability Integrate human-in-the-loop strategies for refining LLM outputs Grasp the forefront of emerging technologies and practices in LLMOps Who this book is for This book is for machine learning professionals, data scientists, ML engineers, and AI leaders interested in LLMOps. It is particularly valuable for those developing, deploying, and managing LLMs, as well as academics and students looking to deepen their understanding of the latest AI and machine learning trends. Professionals in tech companies and research institutions, as well as anyone with foundational knowledge of machine learning will find this resource invaluable for advancing their skills in LLMOps.
The Definitive Guide To Machine Learning Operations In Aws
DOWNLOAD
Author : Neel Sendas
language : en
Publisher: Springer Nature
Release Date : 2025-01-03
The Definitive Guide To Machine Learning Operations In Aws written by Neel Sendas and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Foreword by Dr. Shreyas Subramanian, Principal Data Scientist, Amazon This book focuses on deploying, testing, monitoring, and automating ML systems in production. It covers AWS MLOps tools like Amazon SageMaker, Data Wrangler, and AWS Feature Store, along with best practices for operating ML systems on AWS. This book explains how to design, develop, and deploy ML workloads at scale using AWS cloud's well-architected pillars. It starts with an introduction to AWS services and MLOps tools, setting up the MLOps environment. It covers operational excellence, including CI/CD pipelines and Infrastructure as code. Security in MLOps, data privacy, IAM, and reliability with automated testing are discussed. Performance efficiency and cost optimization, like Right-sizing ML resources, are explored. The book concludes with MLOps best practices, MLOPS for GenAI, emerging trends, and future developments in MLOps By the end, readers will learn operating ML workloads on the AWS cloud. This book suits software developers, ML engineers, DevOps engineers, architects, and team leaders aspiring to be MLOps professionals on AWS. What you will learn: ● Create repeatable training workflows to accelerate model development ● Catalog ML artifacts centrally for model reproducibility and governance ● Integrate ML workflows with CI/CD pipelines for faster time to production ● Continuously monitor data and models in production to maintain quality ● Optimize model deployment for performance and cost Who this book is for: This book suits ML engineers, DevOps engineers, software developers, architects, and team leaders aspiring to be MLOps professionals on AWS.
DOWNLOAD
Author :
language : en
Publisher: "O'Reilly Media, Inc."
Release Date :
written by and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
The Generative Ai Practitioner S Guide
DOWNLOAD
Author : Arup Das
language : en
Publisher: TinyTechMedia LLC
Release Date : 2024-07-20
The Generative Ai Practitioner S Guide written by Arup Das and has been published by TinyTechMedia LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-20 with Computers categories.
Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™
Machine Learning Upgrade
DOWNLOAD
Author : Kristen Kehrer
language : en
Publisher: John Wiley & Sons
Release Date : 2024-07-29
Machine Learning Upgrade written by Kristen Kehrer and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-29 with Computers categories.
A much-needed guide to implementing new technology in workspaces From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system—not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices. Gain an understanding of the intersection between large language models and unstructured data Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking Discover best practices for training, fine tuning, and evaluating LLMs Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.
Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python
DOWNLOAD
Author : Raj Arun
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-04-12
Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python written by Raj Arun and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.
A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise Key Features● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. Book Description “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. What you will learn ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. Table of Contents 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index
Generative Ai Security
DOWNLOAD
Author : Ken Huang
language : en
Publisher: Springer Nature
Release Date : 2024-04-05
Generative Ai Security written by Ken Huang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-05 with Business & Economics categories.
This book explores the revolutionary intersection of Generative AI (GenAI) and cybersecurity. It presents a comprehensive guide that intertwines theories and practices, aiming to equip cybersecurity professionals, CISOs, AI researchers, developers, architects and college students with an understanding of GenAI’s profound impacts on cybersecurity. The scope of the book ranges from the foundations of GenAI, including underlying principles, advanced architectures, and cutting-edge research, to specific aspects of GenAI security such as data security, model security, application-level security, and the emerging fields of LLMOps and DevSecOps. It explores AI regulations around the globe, ethical considerations, the threat landscape, and privacy preservation. Further, it assesses the transformative potential of GenAI in reshaping the cybersecurity landscape, the ethical implications of using advanced models, and the innovative strategies required to secure GenAI applications. Lastly, the book presents an in-depth analysis of the security challenges and potential solutions specific to GenAI, and a forward-looking view of how it can redefine cybersecurity practices. By addressing these topics, it provides answers to questions on how to secure GenAI applications, as well as vital support with understanding and navigating the complex and ever-evolving regulatory environments, and how to build a resilient GenAI security program. The book offers actionable insights and hands-on resources for anyone engaged in the rapidly evolving world of GenAI and cybersecurity.
Mastering Large Language Models
DOWNLOAD
Author : Sanket Subhash Khandare
language : en
Publisher: BPB Publications
Release Date : 2024-03-12
Mastering Large Language Models written by Sanket Subhash Khandare and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-12 with Computers categories.
Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact
A Practical Guide To Generative Ai Using Amazon Bedrock
DOWNLOAD
Author : Avik Bhattacharjee
language : en
Publisher: Springer Nature
Release Date : 2025-07-08
A Practical Guide To Generative Ai Using Amazon Bedrock written by Avik Bhattacharjee and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-08 with Computers categories.
This comprehensive guide gives you the knowledge and skills you need to excel in Generative AI. From understanding the fundamentals to mastering techniques, this book offers a step-by-step approach to leverage Amazon Bedrock to build, deploy, and secure Generative AI applications. The book presents structured chapters and practical examples to delve into key concepts such as prompt engineering, retrieval-augmented generation, and model evaluation. You will gain profound insights into the Amazon Bedrock platform. The book covers setup, life cycle management, and integration with Amazon SageMaker. The book emphasizes real-world applications, and provides use cases and best practices across industries on topics such as text summarization, image generation, and conversational AI bots. The book tackles vital topics including data privacy, security, responsible AI practices, and guidance on navigating governance and monitoring challenges while ensuring adherence to ethical standards and regulations. The book provides the tools and knowledge needed to excel in the rapidly evolving field of Generative AI. Whether you're a data scientist, AI engineer, or business professional, this book will empower you to harness the full potential of Generative AI and drive innovation in your organization. What You Will Learn Understand the fundamentals of Generative AI and Amazon Bedrock Build Responsible Generative AI applications leveraging Amazon Bedrock Know techniques and best practices See real-world applications Integrate and manage platforms Handle securty and governance issues Evaluate and optimze models Gain future-ready insights Understand the project life cycle when building Generative AI Applications Who This Book Is For Data scientistys, AI/ML engineers and architects, software developers plus AI enthusiasts and studenta and educators, and leaders who want to evangelize within organizatios
Generative Ai In Action
DOWNLOAD
Author : Amit Bahree
language : en
Publisher: Simon and Schuster
Release Date : 2024-11-26
Generative Ai In Action written by Amit Bahree and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-26 with Computers categories.
Generative AI can transform your business by streamlining the process of creating text, images, and code. This book will show you how to get in on the action! Generative AI in Action is the comprehensive and concrete guide to generative AI you’ve been searching for. It introduces both AI’s fundamental principles and its practical applications in an enterprise context—from generating text and images for product catalogs and marketing campaigns, to technical reporting, and even writing software. Inside, author Amit Bahree shares his experience leading Generative AI projects at Microsoft for nearly a decade, starting well before the current GPT revolution. Inside Generative AI in Action you will find: • A practical overview of of generative AI applications • Architectural patterns, integration guidance, and best practices for generative AI • The latest techniques like RAG, prompt engineering, and multi-modality • The challenges and risks of generative AI like hallucinations and jailbreaks • How to integrate generative AI into your business and IT strategy Generative AI in Action is full of real-world use cases for generative AI, showing you where and how to start integrating this powerful technology into your products and workflows. You’ll benefit from tried-and-tested implementation advice, as well as application architectures to deploy GenAI in production at enterprise scale. About the technology In controlled environments, deep learning systems routinely surpass humans in reading comprehension, image recognition, and language understanding. Large Language Models (LLMs) can deliver similar results in text and image generation and predictive reasoning. Outside the lab, though, generative AI can both impress and fail spectacularly. So how do you get the results you want? Keep reading! About the book Generative AI in Action presents concrete examples, insights, and techniques for using LLMs and other modern AI technologies successfully and safely. In it, you’ll find practical approaches for incorporating AI into marketing, software development, business report generation, data storytelling, and other typically-human tasks. You’ll explore the emerging patterns for GenAI apps, master best practices for prompt engineering, and learn how to address hallucination, high operating costs, the rapid pace of change and other common problems. What's inside • Best practices for deploying Generative AI apps • Production-quality RAG • Adapting GenAI models to your specific domain About the reader For enterprise architects, developers, and data scientists interested in upgrading their architectures with generative AI. About the author Amit Bahree is Principal Group Product Manager for the Azure AI engineering team at Microsoft. The technical editor on this book was Wee Hyong Tok. Table of Contents Part 1 1 Introduction to generative AI 2 Introduction to large language models 3 Working through an API: Generating text 4 From pixels to pictures: Generating images 5 What else can AI generate? Part 2 6 Guide to prompt engineering 7 Retrieval-augmented generation: The secret weapon 8 Chatting with your data 9 Tailoring models with model adaptation and fine-tuning Part 3 10 Application architecture for generative AI apps 11 Scaling up: Best practices for production deployment 12 Evaluations and benchmarks 13 Guide to ethical GenAI: Principles, practices, and pitfalls A The book’s GitHub repository B Responsible AI tools