Essential Real Analysis

DOWNLOAD
Download Essential Real Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Essential Real Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Essential Real Analysis
DOWNLOAD
Author : Michael Field
language : en
Publisher: Springer
Release Date : 2017-11-06
Essential Real Analysis written by Michael Field and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-06 with Mathematics categories.
This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry. Drawing on the author’s extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations and fractals. Essential Real Analysis will appeal to students in pure and applied mathematics, as well as scientists looking to acquire a firm footing in mathematical analysis. Numerous exercises of varying difficulty, including some suitable for group work or class discussion, make this book suitable for self-study as well as lecture courses.
Basic Real Analysis
DOWNLOAD
Author : Houshang H. Sohrab
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-06-03
Basic Real Analysis written by Houshang H. Sohrab and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-03 with Mathematics categories.
Basic Real Analysis demonstrates the richness of real analysis, giving students an introduction both to mathematical rigor and to the deep theorems and counter examples that arise from such rigor. In this modern and systematic text, all the touchstone results and fundamentals are carefully presented in a style that requires little prior familiarity with proofs or mathematical language. With its many examples, exercises and broad view of analysis, this work is ideal for senior undergraduates and beginning graduate students, either in the classroom or for self-study.
Basic Real Analysis
DOWNLOAD
Author : Anthony W. Knapp
language : en
Publisher: Taylor & Francis US
Release Date : 2005-07-29
Basic Real Analysis written by Anthony W. Knapp and has been published by Taylor & Francis US this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-07-29 with Mathematics categories.
Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.
Basic Elements Of Real Analysis
DOWNLOAD
Author : Murray H. Protter
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-29
Basic Elements Of Real Analysis written by Murray H. Protter and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-29 with Mathematics categories.
From the author of the highly acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one- semester course in real analysis. Many students of mathematics and those students who intend to study any of the physical sciences and computer science need a text that presents the most important material in a brief and elementary fashion. The author has included such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed. There are illustrative examples throughout with over 45 figures.
Advanced Real Analysis
DOWNLOAD
Author : Anthony W. Knapp
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-07-11
Advanced Real Analysis written by Anthony W. Knapp and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-11 with Mathematics categories.
* Presents a comprehensive treatment with a global view of the subject * Rich in examples, problems with hints, and solutions, the book makes a welcome addition to the library of every mathematician
Concise Introduction To Basic Real Analysis
DOWNLOAD
Author : Hemen Dutta
language : en
Publisher: CRC Press
Release Date : 2019-08-12
Concise Introduction To Basic Real Analysis written by Hemen Dutta and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Mathematics categories.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
Real Mathematical Analysis
DOWNLOAD
Author : Charles Chapman Pugh
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-19
Real Mathematical Analysis written by Charles Chapman Pugh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-19 with Mathematics categories.
Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is pure mathematics, and I hope it appeals to you, the budding pure mathematician. Berkeley, California, USA CHARLES CHAPMAN PUGH Contents 1 Real Numbers 1 1 Preliminaries 1 2 Cuts . . . . . 10 3 Euclidean Space . 21 4 Cardinality . . . 28 5* Comparing Cardinalities 34 6* The Skeleton of Calculus 36 Exercises . . . . . . . . 40 2 A Taste of Topology 51 1 Metric Space Concepts 51 2 Compactness 76 3 Connectedness 82 4 Coverings . . . 88 5 Cantor Sets . . 95 6* Cantor Set Lore 99 7* Completion 108 Exercises . . . 115 x Contents 3 Functions of a Real Variable 139 1 Differentiation. . . . 139 2 Riemann Integration 154 Series . . 179 3 Exercises 186 4 Function Spaces 201 1 Uniform Convergence and CO[a, b] 201 2 Power Series . . . . . . . . . . . . 211 3 Compactness and Equicontinuity in CO . 213 4 Uniform Approximation in CO 217 Contractions and ODE's . . . . . . . . 228 5 6* Analytic Functions . . . . . . . . . . . 235 7* Nowhere Differentiable Continuous Functions . 240 8* Spaces of Unbounded Functions 248 Exercises . . . . . 251 267 5 Multivariable Calculus 1 Linear Algebra . . 267 2 Derivatives. . . . 271 3 Higher derivatives . 279 4 Smoothness Classes . 284 5 Implicit and Inverse Functions 286 290 6* The Rank Theorem 296 7* Lagrange Multipliers 8 Multiple Integrals . .
A First Course In Real Analysis
DOWNLOAD
Author : Sterling K. Berberian
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-10
A First Course In Real Analysis written by Sterling K. Berberian and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-10 with Mathematics categories.
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along theway, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
Introduction To Real Analysis
DOWNLOAD
Author : Christopher Heil
language : en
Publisher: Springer
Release Date : 2019-07-20
Introduction To Real Analysis written by Christopher Heil and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-20 with Mathematics categories.
Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject. The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more. Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.
Real Analysis Foundations
DOWNLOAD
Author : Sergei Ovchinnikov
language : en
Publisher: Springer Nature
Release Date : 2021-02-16
Real Analysis Foundations written by Sergei Ovchinnikov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-16 with Mathematics categories.
This textbook explores the foundations of real analysis using the framework of general ordered fields, demonstrating the multifaceted nature of the area. Focusing on the logical structure of real analysis, the definitions and interrelations between core concepts are illustrated with the use of numerous examples and counterexamples. Readers will learn of the equivalence between various theorems and the completeness property of the underlying ordered field. These equivalences emphasize the fundamental role of real numbers in analysis. Comprising six chapters, the book opens with a rigorous presentation of the theories of rational and real numbers in the framework of ordered fields. This is followed by an accessible exploration of standard topics of elementary real analysis, including continuous functions, differentiation, integration, and infinite series. Readers will find this text conveniently self-contained, with three appendices included after the main text, covering an overview of natural numbers and integers, Dedekind's construction of real numbers, historical notes, and selected topics in algebra. Real Analysis: Foundations is ideal for students at the upper-undergraduate or beginning graduate level who are interested in the logical underpinnings of real analysis. With over 130 exercises, it is suitable for a one-semester course on elementary real analysis, as well as independent study.