[PDF] Evolutionary Multiobjective Optimization - eBooks Review

Evolutionary Multiobjective Optimization


Evolutionary Multiobjective Optimization
DOWNLOAD

Download Evolutionary Multiobjective Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Evolutionary Multiobjective Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Evolutionary Multiobjective Optimization


Evolutionary Multiobjective Optimization
DOWNLOAD
Author : Ajith Abraham
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-04-22

Evolutionary Multiobjective Optimization written by Ajith Abraham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-04-22 with Computers categories.


Evolutionary Multiobjective Optimization is a rare collection of the latest state-of-the-art theoretical research, design challenges and applications in the field of multiobjective optimization paradigms using evolutionary algorithms. It includes two introductory chapters giving all the fundamental definitions, several complex test functions and a practical problem involving the multiobjective optimization of space structures under static and seismic loading conditions used to illustrate the various multiobjective optimization concepts. Important features include: Detailed overview of all the multiobjective optimization paradigms using evolutionary algorithms Excellent coverage of timely, advanced multiobjective optimization topics State-of-the-art theoretical research and application developments Chapters authored by pioneers in the field Academics and industrial scientists as well as engineers engaged in research, development and application of evolutionary algorithm based Multiobjective Optimization will find the comprehensive coverage of this book invaluable.



Evolutionary Algorithms For Solving Multi Objective Problems


Evolutionary Algorithms For Solving Multi Objective Problems
DOWNLOAD
Author : Carlos Coello Coello
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-26

Evolutionary Algorithms For Solving Multi Objective Problems written by Carlos Coello Coello and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-26 with Computers categories.


Solving multi-objective problems is an evolving effort, and computer science and other related disciplines have given rise to many powerful deterministic and stochastic techniques for addressing these large-dimensional optimization problems. Evolutionary algorithms are one such generic stochastic approach that has proven to be successful and widely applicable in solving both single-objective and multi-objective problems. This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems, including test suites with associated performance based on a variety of appropriate metrics, as well as serial and parallel algorithm implementations.



Recent Advances In Evolutionary Multi Objective Optimization


Recent Advances In Evolutionary Multi Objective Optimization
DOWNLOAD
Author : Slim Bechikh
language : en
Publisher: Springer
Release Date : 2016-08-09

Recent Advances In Evolutionary Multi Objective Optimization written by Slim Bechikh and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-09 with Technology & Engineering categories.


This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization.



Multiobjective Optimization


Multiobjective Optimization
DOWNLOAD
Author : Jürgen Branke
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-10-15

Multiobjective Optimization written by Jürgen Branke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-15 with Computers categories.


Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.



Multi Objective Optimization Using Evolutionary Algorithms


Multi Objective Optimization Using Evolutionary Algorithms
DOWNLOAD
Author : Kalyanmoy Deb
language : en
Publisher: John Wiley & Sons
Release Date : 2001-07-05

Multi Objective Optimization Using Evolutionary Algorithms written by Kalyanmoy Deb and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-05 with Mathematics categories.


Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run. Comprehensive coverage of this growing area of research Carefully introduces each algorithm with examples and in-depth discussion Includes many applications to real-world problems, including engineering design and scheduling Includes discussion of advanced topics and future research Can be used as a course text or for self-study Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.



Multiobjective Evolutionary Algorithms And Applications


Multiobjective Evolutionary Algorithms And Applications
DOWNLOAD
Author : Kay Chen Tan
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-28

Multiobjective Evolutionary Algorithms And Applications written by Kay Chen Tan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-28 with Computers categories.


Multiobjective Evolutionary Algorithms and Applications provides comprehensive treatment on the design of multiobjective evolutionary algorithms and their applications in domains covering areas such as control and scheduling. Emphasizing both the theoretical developments and the practical implementation of multiobjective evolutionary algorithms, a profound mathematical knowledge is not required. Written for a wide readership, engineers, researchers, senior undergraduates and graduate students interested in the field of evolutionary algorithms and multiobjective optimization with some basic knowledge of evolutionary computation will find this book a useful addition to their book case.



Evolutionary Algorithms For Solving Multi Objective Problems


Evolutionary Algorithms For Solving Multi Objective Problems
DOWNLOAD
Author : Carlos Coello Coello
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Evolutionary Algorithms For Solving Multi Objective Problems written by Carlos Coello Coello and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.


Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface.



Controller Tuning With Evolutionary Multiobjective Optimization


Controller Tuning With Evolutionary Multiobjective Optimization
DOWNLOAD
Author : Gilberto Reynoso Meza
language : en
Publisher: Springer
Release Date : 2016-11-04

Controller Tuning With Evolutionary Multiobjective Optimization written by Gilberto Reynoso Meza and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-04 with Technology & Engineering categories.


This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.



Evolutionary Multiobjective Optimization With Gaussian Process Models


Evolutionary Multiobjective Optimization With Gaussian Process Models
DOWNLOAD
Author : Mlakar Miha
language : en
Publisher: LAP Lambert Academic Publishing
Release Date : 2015-07-20

Evolutionary Multiobjective Optimization With Gaussian Process Models written by Mlakar Miha and has been published by LAP Lambert Academic Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-20 with categories.


This book focuses on the field of surrogate-model-based multiobjective evolutionary optimization. It describes the sate-of-the-art concepts and methods, presents various optimization problems and describes current challenges. The main contributions are done for the optimization problems, where solutions are presented with uncertainty. To compare solutions under uncertainty and improve the optimization results the new relations for comparing solutions under uncertainty are defined. These relations reduce the possibility of incorrect comparisons due to the inaccurate approximations. The relations under uncertainty are then used in the new surrogate-model-based multiobjective evolutionary algorithm called GP-DEMO. The algorithm is thoroughly tested on benchmark and real-world problems and the results show that GP-DEMO, in comparison to other multiobjective evolutionary algorithms, produces comparable results while requiring fewer exact evaluations of the original objective functions.



Evolutionary Multi Criterion Optimization


Evolutionary Multi Criterion Optimization
DOWNLOAD
Author : António Gaspar-Cunha
language : en
Publisher: Springer
Release Date : 2015-03-17

Evolutionary Multi Criterion Optimization written by António Gaspar-Cunha and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-17 with Computers categories.


This book constitutes the refereed proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2015 held in Guimarães, Portugal in March/April 2015. The 68 revised full papers presented together with 4 plenary talks were carefully reviewed and selected from 90 submissions. The EMO 2015 aims to continue these type of developments, being the papers presented focused in: theoretical aspects, algorithms development, many-objectives optimization, robustness and optimization under uncertainty, performance indicators, multiple criteria decision making and real-world applications.