Experimental Evaluation Of Grid Support Enabled Pv Inverter Response To Abnormal Grid Conditions Preprint

DOWNLOAD
Download Experimental Evaluation Of Grid Support Enabled Pv Inverter Response To Abnormal Grid Conditions Preprint PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Experimental Evaluation Of Grid Support Enabled Pv Inverter Response To Abnormal Grid Conditions Preprint book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Experimental Evaluation Of Grid Support Enabled Pv Inverter Response To Abnormal Grid Conditions Preprint
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2017
Experimental Evaluation Of Grid Support Enabled Pv Inverter Response To Abnormal Grid Conditions Preprint written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.
As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid condition response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.
Experimental Evaluation Of Pv Inverter Anti Islanding With Grid Support Functions In Multi Inverter Island Scenarios
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016
Experimental Evaluation Of Pv Inverter Anti Islanding With Grid Support Functions In Multi Inverter Island Scenarios written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.
Experimental Evaluation Of Pv Inverter Anti Islanding With Grid Support Functions In Multi Inverter Island Scenarios
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016
Experimental Evaluation Of Pv Inverter Anti Islanding With Grid Support Functions In Multi Inverter Island Scenarios written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.
Experimental Evaluation Of Load Rejection Over Voltage From Grid Tied Solar Inverters
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2015
Experimental Evaluation Of Load Rejection Over Voltage From Grid Tied Solar Inverters written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.
This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude and duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.
Experimental Determination Of Pv Inverter Response To Grid Phase Shift Events Preprint
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2019
Experimental Determination Of Pv Inverter Response To Grid Phase Shift Events Preprint written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
With the continued growth of renewable energy resources which interface to the electric grid via inverters, the understanding of such devices becomes ever more important to the safe and reliable operation of the bulk power system. This work investigates the specific response of a utility-scale PV inverter to grid voltage phase shift-type disturbances which sometimes occur during grid fault events. The role of the PV inverter's phase-locked-loop (PLL) is identified as important to modeling the response. Switching-level simulations of a utility-scale PV inverter with a modeled PLL show a characteristic response when phase shift disturbances require the PLL to track what appear as fast frequency changes. Additionally, in this work a full-scale laboratory testing was carried out using the Opal real time (RT) OP5142 real time simulator and a large grid simulator to create phase shift disturbances with a high degree of repeatability. A photovoltaic (PV) inverter was connected to a grid simulator, and phase shifts were instantaneously implemented on the simulated grid, the results of the currents were then obtained. The experimental results obtained were validated with simulation results obtained from MATLAB/Simulink.
Ieee 1547 2018 Based Interoperable Pv Inverter With Advanced Grid Support Functions Preprint
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2019
Ieee 1547 2018 Based Interoperable Pv Inverter With Advanced Grid Support Functions Preprint written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Grid integration of photovoltaic (PV) inverters has been increasing in the past decade. Due to the uncertainties introduced with this high penetration, better monitoring and control of the assets becomes crucial for the system stability. Multiple standards are available to enable interoperability in PV inverters. In this paper, an interoperable controller, enabled by DNP3 communications protocols, is developed for a grid-connected, three-phase PV inverter. Advanced inverter control function setpoints like VVAR curves, ride-through curves are sent from a data management system application to the PV inverter through DNP3. The DNP3 server for the PV inverter is programmed on the real-time layer of the inverter controller. A controller hardware-in-the-loop experimental setup is used to validate the developed communications capability of the PV inverter. This work will enable grid integration of smart PV inverters with advanced grid-support functions as well as allow better monitoring and control of assets for grid stability.
Advanced Grid Support Functionality Testing For Florida Power And Light
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2017
Advanced Grid Support Functionality Testing For Florida Power And Light written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.
This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are being required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis between the four test inverters. Inverters were mostly able to meet the requirements of their stated GSF capabilities, with deviations from expected results discussed throughout the report. There were mixed results across the range of abnormal tests, and results were often dependent on the capability of each test inverter to deploy the GSFs of interest. Detailed test data has been provided to FPL to support future decision making with respect to inverter selection and GSF deployment in the field.
Power Hardware In The Loop Evaluation Of Pv Inverter Grid Support On Hawaiian Electric Feeders Preprint
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2017
Power Hardware In The Loop Evaluation Of Pv Inverter Grid Support On Hawaiian Electric Feeders Preprint written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.
As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.
Control And Stability Enhancement Of Grid Interactive Voltage Source Inverters Under Grid Abnormalities
DOWNLOAD
Author : Aswad Adib
language : en
Publisher:
Release Date : 2018
Control And Stability Enhancement Of Grid Interactive Voltage Source Inverters Under Grid Abnormalities written by Aswad Adib and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Voltage source inverters (VSIs) are an essential interface for grid integration of renewable energy resources. Grid-tied VSIs are employed in power grids to integrate distributed generation units, e.g. photovoltaic arrays, wind turbines and energy storage units, to the utility and extract the maximum energy from the DG units in an efficient manner. However, the stability of VSIs and by extension the entire DG system can be degraded under abnormal grid conditions. In this dissertation, new control and switching techniques for stability and power quality improvement of grid-tied VSIs under abnormal grid conditions are presented. For grids with a low inertia and a low short-circuit ratio, commonly referred to as weak grids, grid connection may make VSIs susceptible to voltage distortion and instability. In this dissertation, through root locus analysis of a detailed state-space model, the design of several circuit and control parameters of the grid-tied VSI are evaluated for improving stability in weak grids. It is shown that grid-side filter inductances can be increased for stable operation of VSIs in weak grids. Accordingly, a virtual inductance emulating the effect of an increased inductance in the grid-side filter is developed in this dissertation, which enables stable operation of VSIs in weak grids without the tradeoffs, i.e. additional voltage drop, increased cost and larger size, associated with a larger inductor. The virtual inductance scheme is realized through the injection of a feedforward current element in the VSI controller through a gain component. The measured grid currents, which are sensed for regular VSI controller operation, are employed as the feedforward component eliminating the need for any additional sensors for the utilization of this control scheme. Furthermore, a direct model reference adaptive control (MRAC) scheme is employed in this dissertation to tune the virtual inductance gain block according to a stable reference model for varying grid conditions. The use of direct MRAC scheme allows tuning of the virtual inductance block without the need for a plant parameter estimation stage. The virtual inductance scheme enables stable operation of VSIs in weak grids without system parameter redesign, thereby maintaining the steady-state performance of the system. The efficacy of the virtual inductance feedforward scheme is verified through hardware tests carried out on a three-phase grid-tied experimental setup. Along with extracting energy from the DG sources, grid-tied VSIs are capable of providing various ancillary services to the utility under abnormal conditions. However, providing ancillary services could drive the inverter voltages beyond the linear modulation region resulting in grid current distortions, which could violate the requirements for grid integration of DGs. An atypical pulse width modulation (PWM) technique is proposed in this dissertation, which maximizes the dc-bus utilization of VSIs, which in turn enables the VSIs to supply the maximum extracted power from the DG units to the grid when providing ancillary services while operating in the linear modulation region. The switching scheme is realized by injecting common mode components in the PWM references, computed based on instantaneous reference magnitudes. The proposed scheme is suitable when providing both symmetrical and asymmetrical ancillary services. In this dissertation, negative-sequence compensation and harmonic compensation are employed as instances of symmetrical and asymmetrical ancillary services. The proposed scheme can be integrated with any control scheme and carrier-based PWM combinations. The efficacy of the proposed atypical PWM scheme is verified through both simulation and hardware tests.
Characterization Of Der Momentary Cessation And Rate Of Change Of Frequency Response
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2022
Characterization Of Der Momentary Cessation And Rate Of Change Of Frequency Response written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Momentary cessation (MC) and response to rate-of-change-of-frequency (ROCOF) are inverter responses that can have a serious impact on the stability of the grid during abnormal conditions. Though IEEE Std 1547-2018 provides fairly well defined expected responses from inverter-based DERs during abnormal grid conditions, a significant portion of currently installed DERs in the distribution network do not have a well defined response to abnormal grid conditions. Any analysis of the grid involving inverter MC and ROCOF response must consider the specific characteristics of these responses for the installed DERs to have better confidence in the analysis results, especially for grids with high levels of DERs. However, there is lack of information on MC and ROCOF response for the inverters already installed in the field. In this paper, we examine a large data set of installed inverters to map the dominant population of installed inverters. This information is then used to characterize the most dominant MC and ROCOF responses of installed inverters using experimental data.