Explainable Ai For Intelligent Transportation Systems

DOWNLOAD
Download Explainable Ai For Intelligent Transportation Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explainable Ai For Intelligent Transportation Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Explainable Artificial Intelligence For Intelligent Transportation Systems
DOWNLOAD
Author : Amina Adadi
language : en
Publisher: CRC Press
Release Date : 2023-10-20
Explainable Artificial Intelligence For Intelligent Transportation Systems written by Amina Adadi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-20 with Technology & Engineering categories.
Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems
Explainable Ai For Intelligent Transportation Systems
DOWNLOAD
Author : Amina Adadi
language : en
Publisher:
Release Date : 2024
Explainable Ai For Intelligent Transportation Systems written by Amina Adadi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Artificial intelligence categories.
"Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can be hardly explained. This can be very problematic especially for systems of a safety-critical nature such as transportation systems. Explainable AI methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. Examining explainable AI in the field of ITS, this book has the following key features: provides the necessary background for newcomers to the field (both academics and interested partitioners). presents a timely snapshot of explainable and interpretable models in ITS applications. discusses ethical, societal, and legal implications of adopting XAI in the context of ITS. identifies future research directions and open problems"--
Explainable Artificial Intelligence For Intelligent Transportation Systems
DOWNLOAD
Author : Loveleen Gaur
language : en
Publisher: Springer Nature
Release Date : 2022-08-08
Explainable Artificial Intelligence For Intelligent Transportation Systems written by Loveleen Gaur and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-08 with Computers categories.
Transportation typically entails crucial “life-death” choices, delegating crucial decisions to an AI algorithm without any explanation poses a serious threat. Hence, explainability and responsible AI is crucial in the context of intelligent transportation. In Intelligence Transportation System (ITS) implementations such as traffic management systems and autonomous driving applications, AI-based control mechanisms are gaining prominence. Explainable artificial intelligence for intelligent transportation system tackling certain challenges in the field of autonomous vehicle, traffic management system, data integration and analytics and monitor the surrounding environment. The book discusses and inform researchers on explainable Intelligent Transportation system. It also discusses prospective methods and techniques for enabling the interpretability of transportation systems. The book further focuses on ethical considerations apart from technical considerations.
Explainable Artificial Intelligence For Intelligent Transportation Systems
DOWNLOAD
Author : Amina Adadi
language : en
Publisher: CRC Press
Release Date : 2023-10-20
Explainable Artificial Intelligence For Intelligent Transportation Systems written by Amina Adadi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-20 with Technology & Engineering categories.
Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems
Role Of Explainable Artificial Intelligence In E Commerce
DOWNLOAD
Author : Loveleen Gaur
language : en
Publisher: Springer Nature
Release Date : 2024-04-25
Role Of Explainable Artificial Intelligence In E Commerce written by Loveleen Gaur and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-25 with Business & Economics categories.
The technological boom has provided consumers with endless choices, removing the hindrance of time and place. Understanding the dynamic and competitive business environment, marketers know they need to reinforce indestructible customer experience with the support of algorithmic configurations to minimize human intrusion. World Wide Web (WWW) and online marketing have changed the way of conducting business; with artificial intelligence (AI), business houses can furnish a customized experience to fulfil the perceived expectation of the customer. Artificial intelligence bridges the gap between business and prospective clients, provides enormous amounts of information, prompts grievance redressal system, and further complements the client’s preference. The opportunities online marketing offers with the blend of artificial intelligence tools like chatbots, recommenders, virtual assistance, and interactive voice recognition create improved brand awareness, better customer relationshipmarketing, and personalized product modification. Explainable AI provides the subsequent arena of human–machine collaboration, which will complement and support marketers and people so that they can make better, faster, and more accurate decisions. According to PwC’s report on Explainable AI(XAI), AI will have $15.7 trillion of opportunity by 2030. However, as AI tools become more advanced, more computations are done in a “black box” that humans can hardly comprehend. But the rise of AI in business for actionable insights also poses the following questions: How can marketers know and trust the reasoning behind why an AI system is making recommendations for action? What are the root causes and steering factors? Thus, transparency, trust, and a good understanding of expected business outcomes are increasingly demanded.
Explainable Interpretable And Transparent Ai Systems
DOWNLOAD
Author : B. K. Tripathy
language : en
Publisher: CRC Press
Release Date : 2024-08-23
Explainable Interpretable And Transparent Ai Systems written by B. K. Tripathy and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-23 with Technology & Engineering categories.
Transparent Artificial Intelligence (AI) systems facilitate understanding of the decision-making process and provide opportunities in various aspects of explaining AI models. This book provides up-to-date information on the latest advancements in the field of explainable AI, which is a critical requirement of AI, Machine Learning (ML), and Deep Learning (DL) models. It provides examples, case studies, latest techniques, and applications from domains such as healthcare, finance, and network security. It also covers open-source interpretable tool kits so that practitioners can use them in their domains. Features: Presents a clear focus on the application of explainable AI systems while tackling important issues of “interpretability” and “transparency”. Reviews adept handling with respect to existing software and evaluation issues of interpretability. Provides insights into simple interpretable models such as decision trees, decision rules, and linear regression. Focuses on interpreting black box models like feature importance and accumulated local effects. Discusses capabilities of explainability and interpretability. This book is aimed at graduate students and professionals in computer engineering and networking communications.
Explainable Artificial Intelligence For Cyber Security
DOWNLOAD
Author : Mohiuddin Ahmed
language : en
Publisher: Springer Nature
Release Date : 2022-04-18
Explainable Artificial Intelligence For Cyber Security written by Mohiuddin Ahmed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-18 with Computers categories.
This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Towards Ethical And Socially Responsible Explainable Ai
DOWNLOAD
Author : Mohammad Amir Khusru Akhtar
language : en
Publisher: Springer Nature
Release Date : 2024-08-30
Towards Ethical And Socially Responsible Explainable Ai written by Mohammad Amir Khusru Akhtar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-30 with Technology & Engineering categories.
"Dive deep into the evolving landscape of AI with 'Towards Ethical and Socially Responsible Explainable AI'. This transformative book explores the profound impact of AI on society, emphasizing transparency, accountability, and fairness in decision-making processes. It offers invaluable insights into creating AI systems that not only perform effectively but also uphold ethical standards and foster trust. Essential reading for technologists, policymakers, and all stakeholders invested in shaping a responsible AI future."
Applications Of Computational Learning And Iot In Smart Road Transportation System
DOWNLOAD
Author : Saurav Mallik
language : en
Publisher: Springer Nature
Release Date : 2025-05-08
Applications Of Computational Learning And Iot In Smart Road Transportation System written by Saurav Mallik and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-08 with Technology & Engineering categories.
This book discusses machine learning and AI in real-time image processing for road transportation and traffic management. There is a growing need for affordable solutions that make use of cutting-edge technology like artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT). The efficiency, sustainability, and safety of transport networks can be greatly increased by implementing an Internet of Things (IoT) and machine learning (ML)-based smart road transport system. Install sensors on roadways and intersections to gather data on traffic conditions in real time, such as vehicle density, speed, and flow. Predicting traffic patterns is done by analyzing the gathered data using machine learning algorithms. This can lessen traffic, enhance overall traffic management, and optimize traffic signal timings. Vehicles equipped with Internet of Things devices can have their health monitored in real time. Parameters including lane changes, brake condition, tire pressure, and engine performance can all be monitored by sensors. Based on the gathered data, ML models are used to forecast probable maintenance problems. By scheduling preventive maintenance, failures can be avoided and overall road safety can be increased. Create a smartphone app that would enable drivers to locate parking spots in their area. To forecast parking availability based on past data, the time of day, and special events, apply machine learning algorithms. Integrate Internet of Things (IoT) sensors into fleet vehicles to monitor their performance, location, and fuel consumption. To maximize fleet efficiency, reduce fuel consumption, and plan routes more effectively, apply machine learning algorithms. Train ML models to forecast the quickest and most efficient routes with the help of historical data analysis. Route recommendations for drivers or fleet management systems can be constantly adjusted with real-time updates, which contain real-time data on road conditions, accidents, and construction. To guarantee smooth integration and efficient implementation, government organizations, transportation providers, and technology firms must work together.
Advances In Explainable Ai Applications For Smart Cities
DOWNLOAD
Author : Ghonge, Mangesh M.
language : en
Publisher: IGI Global
Release Date : 2024-01-18
Advances In Explainable Ai Applications For Smart Cities written by Ghonge, Mangesh M. and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-18 with Computers categories.
As smart cities become more prevalent, the need for explainable AI (XAI) applications has become increasingly important. Advances in Explainable AI Applications for Smart Cities is a co-edited book that showcases the latest research and development in XAI for smart city applications. This book covers a wide range of topics, including medical diagnosis, finance and banking, judicial systems, military training, manufacturing industries, autonomous vehicles, insurance claim management, and cybersecurity solutions. Through its diverse case studies and research, this book provides valuable insights into the importance of XAI in smart city applications. This book is an essential resource for undergraduate and postgraduate students, researchers, academicians, industry professionals, and scientists working in research laboratories. It provides a comprehensive overview of XAI concepts, advantages over AI, and its applications in smart city development. By showcasing the impact of XAI on various smart city applications, the book enables readers to understand the importance of XAI in creating more sustainable and efficient smart cities. Additionally, the book addresses the open challenges and research issues related to XAI in modern smart cities, providing a roadmap for future research in this field. Overall, this book is a valuable resource for anyone interested in understanding the importance of XAI in smart city applications.