[PDF] Exploiting Machine Learning For Robust Security - eBooks Review

Exploiting Machine Learning For Robust Security


Exploiting Machine Learning For Robust Security
DOWNLOAD

Download Exploiting Machine Learning For Robust Security PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploiting Machine Learning For Robust Security book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Exploiting Machine Learning For Robust Security


Exploiting Machine Learning For Robust Security
DOWNLOAD
Author : Anchit Bijalwan
language : en
Publisher: Information Science Reference
Release Date : 2025-02-21

Exploiting Machine Learning For Robust Security written by Anchit Bijalwan and has been published by Information Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-21 with Computers categories.


In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.



Exploiting Machine Learning For Robust Security


Exploiting Machine Learning For Robust Security
DOWNLOAD
Author : Minakshi
language : en
Publisher: IGI Global
Release Date : 2025-04-16

Exploiting Machine Learning For Robust Security written by Minakshi and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-16 with Computers categories.


In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.



Dependable Embedded Systems


Dependable Embedded Systems
DOWNLOAD
Author : Jörg Henkel
language : en
Publisher: Springer Nature
Release Date : 2020-12-09

Dependable Embedded Systems written by Jörg Henkel and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-09 with Technology & Engineering categories.


This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.



Deep Learning Applications For Cyber Security


Deep Learning Applications For Cyber Security
DOWNLOAD
Author : Mamoun Alazab
language : en
Publisher: Springer
Release Date : 2019-08-14

Deep Learning Applications For Cyber Security written by Mamoun Alazab and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-14 with Computers categories.


Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Hendrik Blockeel
language : en
Publisher: Springer
Release Date : 2013-09-12

Machine Learning And Knowledge Discovery In Databases written by Hendrik Blockeel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-12 with Computers categories.


This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.



Machine Learning And Security


Machine Learning And Security
DOWNLOAD
Author : Clarence Chio
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-01-26

Machine Learning And Security written by Clarence Chio and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-26 with Computers categories.


Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions



Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies


Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2019-08-22

Robust Machine Learning Algorithms And Systems For Detection And Mitigation Of Adversarial Attacks And Anomalies written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-22 with Computers categories.


The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.



Machine Learning For Cybersecurity Cookbook


Machine Learning For Cybersecurity Cookbook
DOWNLOAD
Author : Emmanuel Tsukerman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-25

Machine Learning For Cybersecurity Cookbook written by Emmanuel Tsukerman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-25 with Computers categories.


Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.



Mastering Machine Learning For Penetration Testing


Mastering Machine Learning For Penetration Testing
DOWNLOAD
Author : Chiheb Chebbi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-27

Mastering Machine Learning For Penetration Testing written by Chiheb Chebbi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-27 with Language Arts & Disciplines categories.


Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book Description Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it’s important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you’ve gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you’ll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you’ll focus on topics such as network intrusion detection and AV and IDS evasion. We’ll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is for This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.



Prediction Learning And Games


Prediction Learning And Games
DOWNLOAD
Author : Nicolo Cesa-Bianchi
language : en
Publisher: Cambridge University Press
Release Date : 2006-03-13

Prediction Learning And Games written by Nicolo Cesa-Bianchi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-13 with Computers categories.


This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.