Exploratory And Multivariate Data Analysis

DOWNLOAD
Download Exploratory And Multivariate Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploratory And Multivariate Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Exploratory And Multivariate Data Analysis
DOWNLOAD
Author : Michel Jambu
language : en
Publisher: Elsevier
Release Date : 1991-09-09
Exploratory And Multivariate Data Analysis written by Michel Jambu and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-09-09 with Mathematics categories.
With a useful index of notations at the beginning, this book explains and illustrates the theory and application of data analysis methods from univariate to multidimensional and how to learn and use them efficiently. This book is well illustrated and is a useful and well-documented review of the most important data analysis techniques. - Describes, in detail, exploratory data analysis techniques from the univariate to the multivariate ones - Features a complete description of correspondence analysis and factor analysis techniques as multidimensional statistical data analysis techniques, illustrated with concrete and understandable examples - Includes a modern and up-to-date description of clustering algorithms with many properties which gives a new role of clustering in data analysis techniques
Exploratory Multivariate Analysis By Example Using R
DOWNLOAD
Author : Francois Husson
language : en
Publisher: CRC Press
Release Date : 2020-09-30
Exploratory Multivariate Analysis By Example Using R written by Francois Husson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-30 with categories.
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors.
Exploratory Multivariate Analysis By Example Using R
DOWNLOAD
Author : Francois Husson
language : en
Publisher: CRC Press
Release Date : 2010-11-15
Exploratory Multivariate Analysis By Example Using R written by Francois Husson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-15 with Mathematics categories.
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualizing objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods and the ways they can be exploited using examples from various fields. Throughout the text, each result correlates with an R command accessible in the FactoMineR package developed by the authors. All of the data sets and code are available at http://factominer.free.fr/book By using the theory, examples, and software presented in this book, readers will be fully equipped to tackle real-life multivariate data.
Multivariate Data Analysis
DOWNLOAD
Author : Joseph Hair
language : en
Publisher: Pearson Higher Ed
Release Date : 2016-08-18
Multivariate Data Analysis written by Joseph Hair and has been published by Pearson Higher Ed this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-18 with Business & Economics categories.
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.
Practical Multivariate Analysis
DOWNLOAD
Author : Abdelmonem Afifi
language : en
Publisher: CRC Press
Release Date : 2019-10-16
Practical Multivariate Analysis written by Abdelmonem Afifi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-16 with Mathematics categories.
This is the sixth edition of a popular textbook on multivariate analysis. Well-regarded for its practical and accessible approach, with excellent examples and good guidance on computing, the book is particularly popular for teaching outside statistics, i.e. in epidemiology, social science, business, etc. The sixth edition has been updated with a new chapter on data visualization, a distinction made between exploratory and confirmatory analyses and a new section on generalized estimating equations and many new updates throughout. This new edition will enable the book to continue as one of the leading textbooks in the area, particularly for non-statisticians. Key Features: Provides a comprehensive, practical and accessible introduction to multivariate analysis. Keeps mathematical details to a minimum, so particularly geared toward a non-statistical audience. Includes lots of detailed worked examples, guidance on computing, and exercises. Updated with a new chapter on data visualization.
Exploratory Multivariate Analysis In Archaeology
DOWNLOAD
Author : M. J. Baxter
language : en
Publisher: Eliot Werner Publications/Percheron Press
Release Date : 2015
Exploratory Multivariate Analysis In Archaeology written by M. J. Baxter and has been published by Eliot Werner Publications/Percheron Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Archaeology categories.
This volume presents four techniques of multivariate analysis commonly used by archaeologists (principal component analysis, correspondence analysis, cluster analysis, and discriminant analysis). Employing "ordinary language" and real data sets, and including extensive literature reviews, the book illustrates how these statistical techniques can be applied to specific archaeological questions. A new introduction by the author updates his discussion in light of subsequent developments in the field of quantitative archaeology. Originally published by Edinburgh University Press in 1994.
Applied Multivariate Analysis
DOWNLOAD
Author : Neil H. Timm
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-21
Applied Multivariate Analysis written by Neil H. Timm and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-21 with Mathematics categories.
Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to p- vide students and researchers with an introduction to statistical techniques for the ana- sis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous obser- tions from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data an- ysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text.
Applied Multivariate Data Analysis
DOWNLOAD
Author : Brian S. Everitt
language : en
Publisher: Wiley
Release Date : 2019-11-04
Applied Multivariate Data Analysis written by Brian S. Everitt and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-04 with Mathematics categories.
Making Sense Of Multivariate Data Analysis
DOWNLOAD
Author : John Spicer
language : en
Publisher: SAGE
Release Date : 2005
Making Sense Of Multivariate Data Analysis written by John Spicer and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Univariate Bivariate And Multivariate Statistics Using R
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-14
Univariate Bivariate And Multivariate Statistics Using R written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-14 with Mathematics categories.
A practical source for performing essential statistical analyses and data management tasks in R Univariate, Bivariate, and Multivariate Statistics Using R offers a practical and very user-friendly introduction to the use of R software that covers a range of statistical methods featured in data analysis and data science. The author— a noted expert in quantitative teaching —has written a quick go-to reference for performing essential statistical analyses and data management tasks in R. Requiring only minimal prior knowledge, the book introduces concepts needed for an immediate yet clear understanding of statistical concepts essential to interpreting software output. The author explores univariate, bivariate, and multivariate statistical methods, as well as select nonparametric tests. Altogether a hands-on manual on the applied statistics and essential R computing capabilities needed to write theses, dissertations, as well as research publications. The book is comprehensive in its coverage of univariate through to multivariate procedures, while serving as a friendly and gentle introduction to R software for the newcomer. This important resource: Offers an introductory, concise guide to the computational tools that are useful for making sense out of data using R statistical software Provides a resource for students and professionals in the social, behavioral, and natural sciences Puts the emphasis on the computational tools used in the discovery of empirical patterns Features a variety of popular statistical analyses and data management tasks that can be immediately and quickly applied as needed to research projects Shows how to apply statistical analysis using R to data sets in order to get started quickly performing essential tasks in data analysis and data science Written for students, professionals, and researchers primarily in the social, behavioral, and natural sciences, Univariate, Bivariate, and Multivariate Statistics Using R offers an easy-to-use guide for performing data analysis fast, with an emphasis on drawing conclusions from empirical observations. The book can also serve as a primary or secondary textbook for courses in data analysis or data science, or others in which quantitative methods are featured.