[PDF] Exploratory Data Mining And Data Cleaning - eBooks Review

Exploratory Data Mining And Data Cleaning


Exploratory Data Mining And Data Cleaning
DOWNLOAD

Download Exploratory Data Mining And Data Cleaning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploratory Data Mining And Data Cleaning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Exploratory Data Mining And Data Cleaning


Exploratory Data Mining And Data Cleaning
DOWNLOAD
Author : Tamraparni Dasu
language : en
Publisher: John Wiley & Sons
Release Date : 2003-08-01

Exploratory Data Mining And Data Cleaning written by Tamraparni Dasu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-08-01 with Mathematics categories.


Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.



Making Sense Of Data I


Making Sense Of Data I
DOWNLOAD
Author : Glenn J. Myatt
language : en
Publisher: John Wiley & Sons
Release Date : 2014-07-02

Making Sense Of Data I written by Glenn J. Myatt and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-02 with Mathematics categories.


Praise for the First Edition “...a well-written book on data analysis and data mining that provides an excellent foundation...” —CHOICE “This is a must-read book for learning practical statistics and data analysis...” —Computing Reviews.com A proven go-to guide for data analysis, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition focuses on basic data analysis approaches that are necessary to make timely and accurate decisions in a diverse range of projects. Based on the authors’ practical experience in implementing data analysis and data mining, the new edition provides clear explanations that guide readers from almost every field of study. In order to facilitate the needed steps when handling a data analysis or data mining project, a step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. The tools to summarize and interpret data in order to master data analysis are integrated throughout, and the Second Edition also features: Updated exercises for both manual and computer-aided implementation with accompanying worked examples New appendices with coverage on the freely available TraceisTM software, including tutorials using data from a variety of disciplines such as the social sciences, engineering, and finance New topical coverage on multiple linear regression and logistic regression to provide a range of widely used and transparent approaches Additional real-world examples of data preparation to establish a practical background for making decisions from data Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Second Edition is an excellent reference for researchers and professionals who need to achieve effective decision making from data. The Second Edition is also an ideal textbook for undergraduate and graduate-level courses in data analysis and data mining and is appropriate for cross-disciplinary courses found within computer science and engineering departments.



Hands On Exploratory Data Analysis With Python


Hands On Exploratory Data Analysis With Python
DOWNLOAD
Author : Suresh Kumar Mukhiya
language : en
Publisher:
Release Date : 2020-03-27

Hands On Exploratory Data Analysis With Python written by Suresh Kumar Mukhiya and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with categories.


Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key Features Understand the fundamental concepts of exploratory data analysis using Python Find missing values in your data and identify the correlation between different variables Practice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python package Book Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You'll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You'll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you'll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you'll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you'll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learn Import, clean, and explore data to perform preliminary analysis using powerful Python packages Identify and transform erroneous data using different data wrangling techniques Explore the use of multiple regression to describe non-linear relationships Discover hypothesis testing and explore techniques of time-series analysis Understand and interpret results obtained from graphical analysis Build, train, and optimize predictive models to estimate results Perform complex EDA techniques on open source datasets Who this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.



Statistical Data Cleaning With Applications In R


Statistical Data Cleaning With Applications In R
DOWNLOAD
Author : Mark van der Loo
language : en
Publisher: John Wiley & Sons
Release Date : 2018-04-23

Statistical Data Cleaning With Applications In R written by Mark van der Loo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-23 with Computers categories.


A comprehensive guide to automated statistical data cleaning The production of clean data is a complex and time-consuming process that requires both technical know-how and statistical expertise. Statistical Data Cleaning brings together a wide range of techniques for cleaning textual, numeric or categorical data. This book examines technical data cleaning methods relating to data representation and data structure. A prominent role is given to statistical data validation, data cleaning based on predefined restrictions, and data cleaning strategy. Key features: Focuses on the automation of data cleaning methods, including both theory and applications written in R. Enables the reader to design data cleaning processes for either one-off analytical purposes or for setting up production systems that clean data on a regular basis. Explores statistical techniques for solving issues such as incompleteness, contradictions and outliers, integration of data cleaning components and quality monitoring. Supported by an accompanying website featuring data and R code. This book enables data scientists and statistical analysts working with data to deepen their understanding of data cleaning as well as to upgrade their practical data cleaning skills. It can also be used as material for a course in data cleaning and analyses.



Sql For Data Science


Sql For Data Science
DOWNLOAD
Author : Antonio Badia
language : en
Publisher: Springer Nature
Release Date : 2020-11-09

Sql For Data Science written by Antonio Badia and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-09 with Computers categories.


This textbook explains SQL within the context of data science and introduces the different parts of SQL as they are needed for the tasks usually carried out during data analysis. Using the framework of the data life cycle, it focuses on the steps that are very often given the short shift in traditional textbooks, like data loading, cleaning and pre-processing. The book is organized as follows. Chapter 1 describes the data life cycle, i.e. the sequence of stages from data acquisition to archiving, that data goes through as it is prepared and then actually analyzed, together with the different activities that take place at each stage. Chapter 2 gets into databases proper, explaining how relational databases organize data. Non-traditional data, like XML and text, are also covered. Chapter 3 introduces SQL queries, but unlike traditional textbooks, queries and their parts are described around typical data analysis tasks like data exploration, cleaning and transformation. Chapter 4 introduces some basic techniques for data analysis and shows how SQL can be used for some simple analyses without too much complication. Chapter 5 introduces additional SQL constructs that are important in a variety of situations and thus completes the coverage of SQL queries. Lastly, chapter 6 briefly explains how to use SQL from within R and from within Python programs. It focuses on how these languages can interact with a database, and how what has been learned about SQL can be leveraged to make life easier when using R or Python. All chapters contain a lot of examples and exercises on the way, and readers are encouraged to install the two open-source database systems (MySQL and Postgres) that are used throughout the book in order to practice and work on the exercises, because simply reading the book is much less useful than actually using it. This book is for anyone interested in data science and/or databases. It just demands a bit of computer fluency, but no specific background on databases or data analysis. All concepts are introduced intuitively and with a minimum of specialized jargon. After going through this book, readers should be able to profitably learn more about data mining, machine learning, and database management from more advanced textbooks and courses.



Data Cleaning


Data Cleaning
DOWNLOAD
Author : Ihab F. Ilyas
language : en
Publisher: Morgan & Claypool
Release Date : 2019-06-18

Data Cleaning written by Ihab F. Ilyas and has been published by Morgan & Claypool this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-18 with Computers categories.


This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, this book describes various error detection and repair methods, and attempts to anchor these proposals with multiple taxonomies and views. Specifically, it covers four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, it includes a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Quality Measures In Data Mining


Quality Measures In Data Mining
DOWNLOAD
Author : Fabrice Guillet
language : en
Publisher: Springer
Release Date : 2007-01-17

Quality Measures In Data Mining written by Fabrice Guillet and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-17 with Technology & Engineering categories.


This book presents recent advances in quality measures in data mining.





DOWNLOAD
Author :
language : en
Publisher: IOS Press
Release Date :

written by and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Principles Of Knowledge Management


Principles Of Knowledge Management
DOWNLOAD
Author : Eliezer Geisler
language : en
Publisher: Routledge
Release Date : 2015-03-26

Principles Of Knowledge Management written by Eliezer Geisler and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-26 with Business & Economics categories.


This text provides a comprehensive introduction to the new field of knowledge management. It approaches the subject from a management rather than a highly technical point of view, and provides students with a state-of-the-art survey of KM and its implementation in diverse organizations. The text covers the nature of knowledge (tacit and explicit), the origins and units of organizational knowledge, and the evolution of knowledge management in contemporary society. It explores the implementation and utilization of knowledge management systems, and how to measure their impact, outputs, and benefits. The book includes a variety of original case studies that illustrate specific situations in which the absence or existence of knowledge management systems has been crucial to the organization's actions. Charts and figures throughout help clarify more complex phenomena and classifications, and each chapter includes review questions and a comprehensive index.