Exploring Data Analysis

DOWNLOAD
Download Exploring Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploring Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Exploratory Data Analysis Using R
DOWNLOAD
Author : Ronald K. Pearson
language : en
Publisher: CRC Press
Release Date : 2018-05-04
Exploratory Data Analysis Using R written by Ronald K. Pearson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-04 with Business & Economics categories.
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data. The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing. The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available. About the Author: Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).
Understanding Robust And Exploratory Data Analysis
DOWNLOAD
Author : David C. Hoaglin
language : en
Publisher: John Wiley & Sons
Release Date : 2000-06-02
Understanding Robust And Exploratory Data Analysis written by David C. Hoaglin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-02 with Mathematics categories.
Originally published in hardcover in 1982, this book is now offered in a Wiley Classics Library edition. A contributed volume, edited by some of the preeminent statisticians of the 20th century, Understanding of Robust and Exploratory Data Analysis explains why and how to use exploratory data analysis and robust and resistant methods in statistical practice.
Hands On Exploratory Data Analysis With Python
DOWNLOAD
Author : Suresh Kumar Mukhiya
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-03-27
Hands On Exploratory Data Analysis With Python written by Suresh Kumar Mukhiya and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-27 with Computers categories.
Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Hands On Exploratory Data Analysis With R
DOWNLOAD
Author : Radhika Datar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31
Hands On Exploratory Data Analysis With R written by Radhika Datar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.
Learn exploratory data analysis concepts using powerful R packages to enhance your R data analysis skills Key FeaturesSpeed up your data analysis projects using powerful R packages and techniquesCreate multiple hands-on data analysis projects using real-world dataDiscover and practice graphical exploratory analysis techniques across domainsBook Description Hands-On Exploratory Data Analysis with R will help you build not just a foundation but also expertise in the elementary ways to analyze data. You will learn how to understand your data and summarize its main characteristics. You'll also uncover the structure of your data, and you'll learn graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process—data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will learn how to set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using tools such as DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, identify hidden insights, and present your results in a business context. What you will learnLearn powerful R techniques to speed up your data analysis projectsImport, clean, and explore data using powerful R packagesPractice graphical exploratory analysis techniquesCreate informative data analysis reports using ggplot2Identify and clean missing and erroneous dataExplore data analysis techniques to analyze multi-factor datasetsWho this book is for Hands-On Exploratory Data Analysis with R is for data enthusiasts who want to build a strong foundation for data analysis. If you are a data analyst, data engineer, software engineer, or product manager, this book will sharpen your skills in the complete workflow of exploratory data analysis.
Exploring Data An Introduction To Data Analysis For Social Scientists
DOWNLOAD
Author : Jane; Marsh Elliott (Catherine)
language : en
Publisher: Polity
Release Date : 2009
Exploring Data An Introduction To Data Analysis For Social Scientists written by Jane; Marsh Elliott (Catherine) and has been published by Polity this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.
Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-10
Practical Statistics For Data Scientists written by Peter Bruce and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-10 with Computers categories.
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Think Stats
DOWNLOAD
Author : Allen B. Downey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-10-16
Think Stats written by Allen B. Downey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-16 with Computers categories.
If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data
Exploratory Data Analysis
DOWNLOAD
Author : Frederick Hartwig
language : en
Publisher: SAGE
Release Date : 1979
Exploratory Data Analysis written by Frederick Hartwig and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1979 with Electronic books categories.
An introduction to the underlying principles, central concepts, and basic techniques for conducting and understanding exploratory data analysis - with numerous social science examples.
Exploratory And Multivariate Data Analysis
DOWNLOAD
Author : Michel Jambu
language : en
Publisher: Elsevier
Release Date : 1991-09-09
Exploratory And Multivariate Data Analysis written by Michel Jambu and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-09-09 with Mathematics categories.
With a useful index of notations at the beginning, this book explains and illustrates the theory and application of data analysis methods from univariate to multidimensional and how to learn and use them efficiently. This book is well illustrated and is a useful and well-documented review of the most important data analysis techniques. - Describes, in detail, exploratory data analysis techniques from the univariate to the multivariate ones - Features a complete description of correspondence analysis and factor analysis techniques as multidimensional statistical data analysis techniques, illustrated with concrete and understandable examples - Includes a modern and up-to-date description of clustering algorithms with many properties which gives a new role of clustering in data analysis techniques