[PDF] Exploring Data Science With R And The Tidyverse - eBooks Review

Exploring Data Science With R And The Tidyverse


Exploring Data Science With R And The Tidyverse
DOWNLOAD

Download Exploring Data Science With R And The Tidyverse PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploring Data Science With R And The Tidyverse book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Exploring Data Science With R And The Tidyverse


Exploring Data Science With R And The Tidyverse
DOWNLOAD
Author : Jerry Bonnell
language : en
Publisher: CRC Press
Release Date : 2023-08-14

Exploring Data Science With R And The Tidyverse written by Jerry Bonnell and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-14 with Mathematics categories.


This book introduces the reader to data science using R and the tidyverse. No prerequisite knowledge is needed in college-level programming or mathematics (e.g., calculus or statistics). The book is self-contained so readers can immediately begin building data science workflows without needing to reference extensive amounts of external resources for onboarding. The contents are targeted for undergraduate students but are equally applicable to students at the graduate level and beyond. The book develops concepts using many real-world examples to motivate the reader. Upon completion of the text, the reader will be able to: Gain proficiency in R programming Load and manipulate data frames, and "tidy" them using tidyverse tools Conduct statistical analyses and draw meaningful inferences from them Perform modeling from numerical and textual data Generate data visualizations (numerical and spatial) using ggplot2 and understand what is being represented An accompanying R package "edsdata" contains synthetic and real datasets used by the textbook and is meant to be used for further practice. An exercise set is made available and designed for compatibility with automated grading tools for instructor use.



Introduction To Data Science


Introduction To Data Science
DOWNLOAD
Author : Rafael A. Irizarry
language : en
Publisher: CRC Press
Release Date : 2019-11-12

Introduction To Data Science written by Rafael A. Irizarry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.


Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.



Machine Learning With R The Tidyverse And Mlr


Machine Learning With R The Tidyverse And Mlr
DOWNLOAD
Author : Hefin I. Rhys
language : en
Publisher: Manning
Release Date : 2020-03-31

Machine Learning With R The Tidyverse And Mlr written by Hefin I. Rhys and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-31 with Computers categories.


Summary Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis in the hands of any programmer. Machine Learning with R, the tidyverse, and mlr teaches you widely used ML techniques and how to apply them to your own datasets using the R programming language and its powerful ecosystem of tools. This book will get you started! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Machine Learning with R, the tidyverse, and mlr gets you started in machine learning using R Studio and the awesome mlr machine learning package. This practical guide simplifies theory and avoids needlessly complicated statistics or math. All core ML techniques are clearly explained through graphics and easy-to-grasp examples. In each engaging chapter, you’ll put a new algorithm into action to solve a quirky predictive analysis problem, including Titanic survival odds, spam email filtering, and poisoned wine investigation. What's inside Using the tidyverse packages to process and plot your data Techniques for supervised and unsupervised learning Classification, regression, dimension reduction, and clustering algorithms Statistics primer to fill gaps in your knowledge About the reader For newcomers to machine learning with basic skills in R. About the author Hefin I. Rhys is a senior laboratory research scientist at the Francis Crick Institute. He runs his own YouTube channel of screencast tutorials for R and RStudio. Table of contents: PART 1 - INTRODUCTION 1.Introduction to machine learning 2. Tidying, manipulating, and plotting data with the tidyverse PART 2 - CLASSIFICATION 3. Classifying based on similarities with k-nearest neighbors 4. Classifying based on odds with logistic regression 5. Classifying by maximizing separation with discriminant analysis 6. Classifying with naive Bayes and support vector machines 7. Classifying with decision trees 8. Improving decision trees with random forests and boosting PART 3 - REGRESSION 9. Linear regression 10. Nonlinear regression with generalized additive models 11. Preventing overfitting with ridge regression, LASSO, and elastic net 12. Regression with kNN, random forest, and XGBoost PART 4 - DIMENSION REDUCTION 13. Maximizing variance with principal component analysis 14. Maximizing similarity with t-SNE and UMAP 15. Self-organizing maps and locally linear embedding PART 5 - CLUSTERING 16. Clustering by finding centers with k-means 17. Hierarchical clustering 18. Clustering based on density: DBSCAN and OPTICS 19. Clustering based on distributions with mixture modeling 20. Final notes and further reading



Data Science In Education Using R


Data Science In Education Using R
DOWNLOAD
Author : Ryan A. Estrellado
language : en
Publisher: Routledge
Release Date : 2020-10-26

Data Science In Education Using R written by Ryan A. Estrellado and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-26 with Education categories.


Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.



Text Mining With R


Text Mining With R
DOWNLOAD
Author : Julia Silge
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-06-12

Text Mining With R written by Julia Silge and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-12 with Computers categories.


Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you’ll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You’ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You’ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document’s most important terms with frequency measurements Explore relationships and connections between words with the ggraph and widyr packages Convert back and forth between R’s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages



Exploring Modeling With Data And Differential Equations Using R


Exploring Modeling With Data And Differential Equations Using R
DOWNLOAD
Author : John Zobitz
language : en
Publisher: CRC Press
Release Date : 2022-11-29

Exploring Modeling With Data And Differential Equations Using R written by John Zobitz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-29 with Mathematics categories.


Exploring Modeling with Data and Differential Equations Using R provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model parameterization and simulation of stochastic differential equations are explored, providing additional tools for model analysis and evaluation. This unified framework sits "at the intersection" of different mathematical subject areas, data science, statistics, and the natural sciences. The text throughout emphasizes data science workflows using the R statistical software program and the tidyverse constellation of packages. Only knowledge of calculus is needed; the text’s integrated framework is a stepping stone for further advanced study in mathematics or as a comprehensive introduction to modeling for quantitative natural scientists. The text will introduce you to: modeling with systems of differential equations and developing analytical, computational, and visual solution techniques. the R programming language, the tidyverse syntax, and developing data science workflows. qualitative techniques to analyze a system of differential equations. data assimilation techniques (simple linear regression, likelihood or cost functions, and Markov Chain, Monte Carlo Parameter Estimation) to parameterize models from data. simulating and evaluating outputs for stochastic differential equation models. An associated R package provides a framework for computation and visualization of results. It can be found here: https://cran.r-project.org/web/packages/demodelr/index.html.



Statistical Inference Via Data Science


Statistical Inference Via Data Science
DOWNLOAD
Author : Chester Ismay
language : en
Publisher: CRC Press
Release Date : 2025-05-02

Statistical Inference Via Data Science written by Chester Ismay and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-02 with Mathematics categories.


Statistical Inference via Data Science: A ModernDive into R and the Tidyverse, Second Edition offers a comprehensive guide to learning statistical inference with data science tools widely used in industry, academia, and government. The first part of this book introduces the tidyverse suite of R packages, including ggplot2 for data visualization and dplyr for data wrangling. The second part introduces data modeling via simple and multiple linear regression. The third part presents statistical inference using simulation-based methods within a general framework implemented in R via the infer package, a suitable complement to the tidyverse. By working with these methods, readers can implement effective exploratory data analyses, conduct statistical modeling with data, and carry out statistical inference via confidence intervals and hypothesis testing. All of these tasks are performed by strongly emphasizing data visualization. Key Features in the Second Edition: Minimal Prerequisites: No prior calculus or coding experience is needed, making the content accessible to a wide audience. Real-World Data: Learn with real-world datasets, including all domestic flights leaving New York City in 2023, the Gapminder project, FiveThirtyEight.com data, and new datasets on health, global development, music, coffee quality, and geyser eruptions. Simulation-Based Inference: Statistical inference through simulation-based methods. Expanded Theoretical Discussions: Includes deeper coverage of theory-based approaches, their connection with simulation-based approaches, and a presentation of intuitive and formal aspects of these methods. Enhanced Use of the infer Package: Leverages the infer package for “tidy” and transparent statistical inference, enabling readers to construct confidence intervals and conduct hypothesis tests through multiple linear regression and beyond. Dynamic Online Resources: All code and output are embedded in the text, with additional interactive exercises, discussions, and solutions available online. Broadened Applications: Suitable for undergraduate and graduate courses, including statistics, data science, and courses emphasizing reproducible research. The first edition of the book has been used in so many different ways--for courses in statistical inference, statistical programming, business analytics, and data science for social policy, and by professionals in many other means. Ideal for those new to statistics or looking to deepen their knowledge, this edition provides a clear entry point into data science and modern statistical methods.



Data Science For Water Utilities


Data Science For Water Utilities
DOWNLOAD
Author : Peter Prevos
language : en
Publisher: CRC Press
Release Date : 2023-05-10

Data Science For Water Utilities written by Peter Prevos and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-10 with Computers categories.


This addition to the Data Science Series introduces the principles of data science and the R language to the singular needs of water professionals. The book provides unique data and examples relevant to managing water utility and is sourced from the author’s extensive experience. Data Science for Water Utilities: Data as a Source of Value is an applied, practical guide that shows water professionals how to use data science to solve urban water management problems. Content develops through four case studies. The first looks at analysing water quality to ensure public health. The second considers customer feedback. The third case study introduces smart meter data. The guide flows easily from basic principles through code that, with each case study, increases in complexity. The last case study analyses data using basic machine learning. Readers will be familiar with analysing data but do not need coding experience to use this book. The title will be essential reading for anyone seeking a practical introduction to data science and creating value with R.



Supervised Machine Learning For Text Analysis In R


Supervised Machine Learning For Text Analysis In R
DOWNLOAD
Author : Emil Hvitfeldt
language : en
Publisher: CRC Press
Release Date : 2021-11-03

Supervised Machine Learning For Text Analysis In R written by Emil Hvitfeldt and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-03 with Computers categories.


Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.