[PDF] Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis - eBooks Review

Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis


Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis
DOWNLOAD

Download Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis


Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date :

Extended Nonstandard Neutrosophic Logic Set And Probability Based On Extended Nonstandard Analysis written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


We extend for the second time the nonstandard analysis by adding the left monad closed to the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998) we add now the unpierced binad—all these in order to close the newly extended nonstandard space under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations.



Advances Of Standard And Nonstandard Neutrosophic Theories


Advances Of Standard And Nonstandard Neutrosophic Theories
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date :

Advances Of Standard And Nonstandard Neutrosophic Theories written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


In this book, we approach different topics related to neutrosophics, such as: Neutrosophic Set, Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set, Picture Fuzzy Set, Ternary Fuzzy Set, Pythagorean Fuzzy Set, Atanassov’s Intuitionistic Fuzzy Set of second type, Spherical Fuzzy Set, n-HyperSpherical Neutrosophic Set, q-Rung Orthopair Fuzzy Set, truth-membership, indeterminacy-membership, falsehood-nonmembership, Regret Theory, Grey System Theory, Three-Ways Decision, n-Ways Decision, Neutrosophy, Neutrosophication, Neutrosophic Probability, Refined Neutrosophy, Refined Neutrosophication, Nonstandard Analysis; Extended Nonstandard Analysis; Open and Closed Monads to the Left/Right; Pierced and Unpierced Binads; and so on.



New Types Of Neutrosophic Set Logic Probability Neutrosophic Over Under Off Set Neutrosophic Refined Set And Their Extension To Plithogenic Set Logic Probability With Applications


New Types Of Neutrosophic Set Logic Probability Neutrosophic Over Under Off Set Neutrosophic Refined Set And Their Extension To Plithogenic Set Logic Probability With Applications
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: MDPI
Release Date : 2019-11-27

New Types Of Neutrosophic Set Logic Probability Neutrosophic Over Under Off Set Neutrosophic Refined Set And Their Extension To Plithogenic Set Logic Probability With Applications written by Florentin Smarandache and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-27 with Technology & Engineering categories.


This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.



Improved Definition Of Nonstandard Neutrosophic Logic And Introduction To Neutrosophic Hyperreals Fifth Version


Improved Definition Of Nonstandard Neutrosophic Logic And Introduction To Neutrosophic Hyperreals Fifth Version
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-11-01

Improved Definition Of Nonstandard Neutrosophic Logic And Introduction To Neutrosophic Hyperreals Fifth Version written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-01 with Mathematics categories.


In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never utilized since they were improved shortly after but he omits to tell their development, and that in real world applications we need to convert/approximate the NonStandard Analysis hyperreals, monads and binads to tiny intervals with the desired accuracy – otherwise they would be inapplicable. We point out several errors and false statements by Imamura [21] with respect to the inf/sup of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the same for his definition of nonstandard unit interval, and we prove that there is not a total order on the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are indeterminate), whence the Transfer Principle from R to R* is questionable. After his criticism, several response publications on theoretical nonstandard neutrosophics followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and unpierced binad - all these in order to close the newly extended nonstandard space (R*) under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations [23, 24]. Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together with NonStandard Neutrosophic Operators are presented.



Collected Papers Volume Vi


Collected Papers Volume Vi
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-01-15

Collected Papers Volume Vi written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-15 with Mathematics categories.


This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.



Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond


Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-15

Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Mathematics categories.


This book represents the fourth volume in the series Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of the HyperUncertain Set, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent complexity of real-world uncertainties. At the heart of this series lies combinatorics and set theory—cornerstones of mathematics that address the study of counting, arrangements, and the relationships between collections under defined rules. Traditionally, combinatorics has excelled in solving problems involving uncertainty, while advancements in set theory have expanded its scope to include powerful constructs like fuzzy and neutrosophic sets. These advanced sets bring new dimensions to uncertainty modeling by capturing not just binary truth but also indeterminacy and falsity. In this fourth volume, the integration of set theory with graph theory takes center stage, culminating in "graphized" structures such as hypergraphs and superhypergraphs. These structures, paired with innovations like Neutrosophic Oversets, Undersets, Offsets, and the Nonstandard Real Set, extend the boundaries of mathematical abstraction. This fusion of combinatorics, graph theory, and uncertain set theory creates a rich foundation for addressing the multidimensional and hierarchical uncertainties prevalent in both theoretical and applied domains. The book is structured into thirteen chapters, each contributing unique perspectives and advancements in the realm of HyperUncertain Sets and their related frameworks. The first chapter (Advancing Traditional Set Theory with Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets) explores the evolution of classical set theory to better address the complexity and ambiguity of real-world phenomena. By introducing hierarchical structures like hyperstructures and superhyperstructures—created through iterative applications of power sets—it lays the groundwork for more abstract and adaptable mathematical tools. The focus is on extending three foundational frameworks: Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets into their hyperforms: Hyperfuzzy Sets, Hyperneutrosophic Sets, and Hyperplithogenic Sets. These advanced concepts are applied across diverse fields such as statistics, clustering, evolutionary theory, topology, decision-making, probability, and language theory. The goal is to provide a robust platform for future research in this expanding area of study. The second chapter (Applications and Mathematical Properties of Hyperneutrosophic and SuperHyperneutrosophic Sets) extends the work on Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets by delving into their advanced applications and mathematical foundations. Building on prior research, it specifically examines Hyperneutrosophic and SuperHyperneutrosophic Sets, exploring their integration into: Neutrosophic Logic, Cognitive Maps,Graph Neural Networks, Classifiers, and Triplet Groups. The chapter also investigates their mathematical properties and applicability in addressing uncertainties and complexities inherent in various domains. These insights aim to inspire innovative uses of hypergeneralized sets in modern theoretical and applied research. The third chapter (New Extensions of Hyperneutrosophic Sets – Bipolar, Pythagorean, Double-Valued, and Interval-Valued Sets) studies advanced variations of Neutrosophic Sets, a mathematical framework defined by three membership functions: truth (T), indeterminacy (I), and falsity (F). By leveraging the concepts of Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets. These extensions address increasingly complex scenarios, and a brief analysis is provided to explore their potential applications and mathematical underpinnings. Building on prior research, the fourth chapter (Hyperneutrosophic Extensions of Complex, Single-Valued Triangular, Fermatean, and Linguistic Sets) expands on Neutrosophic Set theory by incorporating recent advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets. The study focuses on extending: Complex Neutrosophic Sets, Single-Valued Triangular Neutrosophic Sets, Fermatean Neutrosophic Sets, and Linguistic Neutrosophic Sets. The analysis highlights the mathematical structures of these hyperextensions and explores their connections with existing set-theoretic concepts, offering new insights into managing uncertainty in multidimensional challenges. The fifth chapter (Advanced Extensions of Hyperneutrosophic Sets – Dynamic, Quadripartitioned, Pentapartitioned, Heptapartitioned, and m-Polar) delves deeper into the evolution of Neutrosophic Sets by exploring advanced frameworks designed for even more intricate applications. New extensions include: Dynamic Neutrosophic Sets, Quadripartitioned Neutrosophic Sets, Pentapartitioned Neutrosophic Sets, Heptapartitioned Neutrosophic Sets, and m-Polar Neutrosophic Sets. These developments build upon foundational research and aim to provide robust tools for addressing multidimensional and highly nuanced problems. The sixth chapter (Advanced Extensions of Hyperneutrosophic Sets – Cubic, Trapezoidal, q-Rung Orthopair, Overset, Underset, and Offset) builds upon the Neutrosophic framework, which employs truth (T), indeterminacy (I), and falsity (F) to address uncertainty. Leveraging advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Cubic Neutrosophic Sets, Trapezoidal Neutrosophic Sets, q-Rung Orthopair Neutrosophic Sets, Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets. The chapter provides a brief analysis of these new set types, exploring their properties and potential applications in solving multidimensional problems. The seventh chapter (Specialized Classes of Hyperneutrosophic Sets – Support, Paraconsistent, and Faillibilist Sets) delves into unique classes of Neutrosophic Sets extended through Hyperneutrosophic and SuperHyperneutrosophic frameworks to tackle advanced theoretical challenges. The study introduces and extends: Support Neutrosophic Sets, Neutrosophic Intuitionistic Sets, Neutrosophic Paraconsistent Sets, Neutrosophic Faillibilist Sets, Neutrosophic Paradoxist and Pseudo-Paradoxist Sets, Neutrosophic Tautological and Nihilist Sets, Neutrosophic Dialetheist Sets, and Neutrosophic Trivialist Sets. These extensions address highly nuanced aspects of uncertainty, further advancing the theoretical foundation of Neutrosophic mathematics. The eight chapter (MultiNeutrosophic Sets and Refined Neutrosophic Sets) focuses on two advanced Neutrosophic frameworks: MultiNeutrosophic Sets, and Refined Neutrosophic Sets. Using Hyperneutrosophic and nn-SuperHyperneutrosophic Sets, these extensions are analyzed in detail, highlighting their adaptability to multidimensional and complex scenarios. Examples and mathematical properties are provided to showcase their practical relevance and theoretical depth. The ninth chapter (Advanced Hyperneutrosophic Set Types – Type-m, Nonstationary, Subset-Valued, and Complex Refined) explores extensions of the Neutrosophic framework, focusing on: Type-m Neutrosophic Sets, Nonstationary Neutrosophic Sets, Subset-Valued Neutrosophic Sets, and Complex Refined Neutrosophic Sets. These extensions utilize the Hyperneutrosophic and SuperHyperneutrosophic frameworks to address advanced challenges in uncertainty management, expanding their mathematical scope and practical applications. The tenth chapter (Hyperfuzzy Hypersoft Sets and Hyperneutrosophic Hypersoft Sets) integrates the principles of Fuzzy, Neutrosophic, and Soft Sets with hyperstructures to introduce: Hyperfuzzy Hypersoft Sets, and Hyperneutrosophic Hypersoft Sets. These frameworks are designed to manage complex uncertainty through hierarchical structures based on power sets, with detailed analysis of their properties and theoretical potential. The eleventh chapter (A Review of SuperFuzzy, SuperNeutrosophic, and SuperPlithogenic Sets) revisits and extends the study of advanced set concepts such as: SuperFuzzy Sets, Super-Intuitionistic Fuzzy Sets,Super-Neutrosophic Sets, and SuperPlithogenic Sets, including their specialized variants like quadripartitioned, pentapartitioned, and heptapartitioned forms. The work serves as a consolidation of existing studies while highlighting potential directions for future research in hierarchical uncertainty modeling. Focusing on decision-making under uncertainty, the tweve chapter (Advanced SuperHypersoft and TreeSoft Sets) introduces six novel concepts: SuperHypersoft Rough Sets,SuperHypersoft Expert Sets, Bipolar SuperHypersoft Sets, TreeSoft Rough Sets, TreeSoft Expert Sets, and Bipolar TreeSoft Sets. Definitions, properties, and potential applications of these frameworks are explored to enhance the flexibility of soft set-based models. The final chapter (Hierarchical Uncertainty in Fuzzy, Neutrosophic, and Plithogenic Sets) provides a comprehensive survey of hierarchical uncertainty frameworks, with a focus on Plithogenic Sets and their advanced extensions: Hyperplithogenic Sets, SuperHyperplithogenic Sets. It examines relationships with other major concepts such as Intuitionistic Fuzzy Sets, Vague Sets, Picture Fuzzy Sets, Hesitant Fuzzy Sets, and multi-partitioned Neutrosophic Sets, consolidating their theoretical interconnections for modeling complex systems. This volume not only reflects the dynamic interplay between theoretical rigor and practical application but also serves as a beacon for future research in uncertainty modeling, offering advanced tools to tackle the intricacies of modern challenges.



Introduction To Non Standard Neutrosophic Topology


Introduction To Non Standard Neutrosophic Topology
DOWNLOAD
Author : Mohammed A. Al Shumrani
language : en
Publisher: Infinite Study
Release Date :

Introduction To Non Standard Neutrosophic Topology written by Mohammed A. Al Shumrani and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


For the first time we introduce non-standard neutrosophic topology on the extended non-standard analysis space, called non-standard real monad space, which is closed under neutrosophic non-standard infimum and supremum. Many classical topological concepts are extended to the non-standard neutrosophic topology, several theorems and properties about them are proven, and many examples are presented.



Research On The Topics Of Neutrosophic Operations Research


Research On The Topics Of Neutrosophic Operations Research
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2023-08-10

Research On The Topics Of Neutrosophic Operations Research written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-10 with Technology & Engineering categories.


In this volume, we present a set of research that was published in cooperation with a number of researchers and those interested in keeping pace with the great scientific development that our contemporary world is witnessing, and one of its products was neutrosophic science, which was founded by the American scientist and mathematical philosopher Florentin Smarandache in 1995. Through it, we present a new vision for some research methods. Operations research to the concepts of this science.



Neutrosophic Sets And Systems Vol 73 2024 Proceedings Of The Mediterranean Conference On Three Decades Of Neutrosophic And Plithogenic Theories And Applications Meconet 2024


Neutrosophic Sets And Systems Vol 73 2024 Proceedings Of The Mediterranean Conference On Three Decades Of Neutrosophic And Plithogenic Theories And Applications Meconet 2024
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2024-12-01

Neutrosophic Sets And Systems Vol 73 2024 Proceedings Of The Mediterranean Conference On Three Decades Of Neutrosophic And Plithogenic Theories And Applications Meconet 2024 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-01 with Mathematics categories.


This volume contains the proceedings of the Mediterranean Conference on Neutrosophic Theory (MeCoNeT 2024), held at the Accademia Peloritana dei Pericolanti of the University of Messina on September 24-25, 2024. The event was organized by the MIFT Department (Mathematics, Computer Science, Physics, and Earth Sciences) of the University of Messina, marking the first international congress on neutrosophic theories outside the Americas. This milestone has firmly established the Mediterranean region as a key hub for research in the rapidly growing field of neutrosophic theory. The MeCoNeT 2024 conference drew over 100 participants from more than 15 countries, with more than 50 scientific contributions selected through a rigorous peer review process. The hybrid format of the event—featuring in-person sessions at the historical Accademia Peloritana dei Pericolanti and online parallel sessions—allowed for broad international participation. The conference thus offered an ideal platform for sharing interdisciplinary research and addressing contemporary challenges in mathematics and beyond.



Introduction To Upside Down Logic Its Deep Relation To Neutrosophic Logic And Applications


Introduction To Upside Down Logic Its Deep Relation To Neutrosophic Logic And Applications
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date :

Introduction To Upside Down Logic Its Deep Relation To Neutrosophic Logic And Applications written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


In the study of uncertainty, concepts such as fuzzy sets [113], fuzzy graphs [79], and neutrosophic sets [88] have been extensively investigated. This paper focuses on a novel logical framework known as Upside-Down Logic, which systematically transforms truths into falsehoods and vice versa by altering contexts, meanings, or perspectives. The concept was first introduced by F. Smarandache in [99]. To contribute to the growing interest in this area, this paper presents a mathematical definition of Upside-Down Logic, supported by illustrative examples, including applications related to the Japanese language. Additionally, it introduces and explores Contextual Upside-Down Logic, an advanced extension that incorporates a contextual transformation function, enabling the adjustment of logical connectives in conjunction with flipping truth values based on contextual shifts. Furthermore, the paper introduces Indeterm-Upside-Down Logic and Certain Upside-Down Logic, both of which expand Upside-Down Logic to better accommodate indeterminate values. Finally, a simple algorithm leveraging Upside-Down Logic is proposed and analyzed, providing insights into its computational characteristics and potential applications.