Feature Store For Machine Learning

DOWNLOAD
Download Feature Store For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Feature Store For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Feature Store For Machine Learning
DOWNLOAD
Author : Jayanth Kumar M J
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-06-30
Feature Store For Machine Learning written by Jayanth Kumar M J and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-30 with Computers categories.
Learn how to leverage feature stores to make the most of your machine learning models Key Features • Understand the significance of feature stores in the ML life cycle • Discover how features can be shared, discovered, and re-used • Learn to make features available for online models during inference Book Description Feature store is one of the storage layers in machine learning (ML) operations, where data scientists and ML engineers can store transformed and curated features for ML models. This makes them available for model training, inference (batch and online), and reuse in other ML pipelines. Knowing how to utilize feature stores to their fullest potential can save you a lot of time and effort, and this book will teach you everything you need to know to get started. Feature Store for Machine Learning is for data scientists who want to learn how to use feature stores to share and reuse each other's work and expertise. You'll be able to implement practices that help in eliminating reprocessing of data, providing model-reproducible capabilities, and reducing duplication of work, thus improving the time to production of the ML model. While this ML book offers some theoretical groundwork for developers who are just getting to grips with feature stores, there's plenty of practical know-how for those ready to put their knowledge to work. With a hands-on approach to implementation and associated methodologies, you'll get up and running in no time. By the end of this book, you'll have understood why feature stores are essential and how to use them in your ML projects, both on your local system and on the cloud. What you will learn • Understand the significance of feature stores in a machine learning pipeline • Become well-versed with how to curate, store, share and discover features using feature stores • Explore the different components and capabilities of a feature store • Discover how to use feature stores with batch and online models • Accelerate your model life cycle and reduce costs • Deploy your first feature store for production use cases Who this book is for If you have a solid grasp on machine learning basics, but need a comprehensive overview of feature stores to start using them, then this book is for you. Data/machine learning engineers and data scientists who build machine learning models for production systems in any domain, those supporting data engineers in productionizing ML models, and platform engineers who build data science (ML) platforms for the organization will also find plenty of practical advice in the later chapters of this book.
Feature Store For Machine Learning
DOWNLOAD
Author : Jayanth Kumar M. J
language : en
Publisher: Packt Publishing
Release Date : 2022-06-30
Feature Store For Machine Learning written by Jayanth Kumar M. J and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-30 with categories.
Learn how to leverage feature stores to make the most of your machine learning models Key Features: Understand the significance of feature stores in the ML life cycle Discover how features can be shared, discovered, and re-used Learn to make features available for online models during inference Book Description: Feature store is one of the storage layers in machine learning (ML) operations, where data scientists and ML engineers can store transformed and curated features for ML models. This makes them available for model training, inference (batch and online), and reuse in other ML pipelines. Knowing how to utilize feature stores to their fullest potential can save you a lot of time and effort, and this book will teach you everything you need to know to get started. Feature Store for Machine Learning is for data scientists who want to learn how to use feature stores to share and reuse each other's work and expertise. You'll be able to implement practices that help in eliminating reprocessing of data, providing model-reproducible capabilities, and reducing duplication of work, thus improving the time to production of the ML model. While this ML book offers some theoretical groundwork for developers who are just getting to grips with feature stores, there's plenty of practical know-how for those ready to put their knowledge to work. With a hands-on approach to implementation and associated methodologies, you'll get up and running in no time. By the end of this book, you'll have understood why feature stores are essential and how to use them in your ML projects, both on your local system and on the cloud. What You Will Learn: Understand the significance of feature stores in a machine learning pipeline Become well-versed with how to curate, store, share and discover features using feature stores Explore the different components and capabilities of a feature store Discover how to use feature stores with batch and online models Accelerate your model life cycle and reduce costs Deploy your first feature store for production use cases Who this book is for: If you have a solid grasp on machine learning basics, but need a comprehensive overview of feature stores to start using them, then this book is for you. Data/machine learning engineers and data scientists who build machine learning models for production systems in any domain, those supporting data engineers in productionizing ML models, and platform engineers who build data science (ML) platforms for the organization will also find plenty of practical advice in the later chapters of this book.
Scaling Machine Learning With Spark
DOWNLOAD
Author : Adi Polak
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-03-07
Scaling Machine Learning With Spark written by Adi Polak and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-07 with Computers categories.
Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better. Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology. You will: Explore machine learning, including distributed computing concepts and terminology Manage the ML lifecycle with MLflow Ingest data and perform basic preprocessing with Spark Explore feature engineering, and use Spark to extract features Train a model with MLlib and build a pipeline to reproduce it Build a data system to combine the power of Spark with deep learning Get a step-by-step example of working with distributed TensorFlow Use PyTorch to scale machine learning and its internal architecture
Machine Learning System Design
DOWNLOAD
Author : Valerii Babuskhin
language : en
Publisher: Simon and Schuster
Release Date : 2025-02-25
Machine Learning System Design written by Valerii Babuskhin and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-25 with Computers categories.
Get the big picture and the important details with this end-to-end guide for designing highly effective, reliable machine learning systems. From information gathering to release and maintenance, Machine Learning System Design guides you step-by-step through every stage of the machine learning process. Inside, you’ll find a reliable framework for building, maintaining, and improving machine learning systems at any scale or complexity. In Machine Learning System Design: With end-to-end examples you will learn: • The big picture of machine learning system design • Analyzing a problem space to identify the optimal ML solution • Ace ML system design interviews • Selecting appropriate metrics and evaluation criteria • Prioritizing tasks at different stages of ML system design • Solving dataset-related problems with data gathering, error analysis, and feature engineering • Recognizing common pitfalls in ML system development • Designing ML systems to be lean, maintainable, and extensible over time Authors Valeri Babushkin and Arseny Kravchenko have filled this unique handbook with campfire stories and personal tips from their own extensive careers. You’ll learn directly from their experience as you consider every facet of a machine learning system, from requirements gathering and data sourcing to deployment and management of the finished system. About the technology Designing and delivering a machine learning system is an intricate multistep process that requires many skills and roles. Whether you’re an engineer adding machine learning to an existing application or designing a ML system from the ground up, you need to navigate massive datasets and streams, lock down testing and deployment requirements, and master the unique complexities of putting ML models into production. That’s where this book comes in. About the book Machine Learning System Design shows you how to design and deploy a machine learning project from start to finish. You’ll follow a step-by-step framework for designing, implementing, releasing, and maintaining ML systems. As you go, requirement checklists and real-world examples help you prepare to deliver and optimize your own ML systems. You’ll especially love the campfire stories and personal tips, and ML system design interview tips. What's inside • Metrics and evaluation criteria • Solve common dataset problems • Common pitfalls in ML system development • ML system design interview tips About the reader For readers who know the basics of software engineering and machine learning. Examples in Python. About the author Valerii Babushkin is an accomplished data science leader with extensive experience. He currently serves as a Senior Principal at BP. Arseny Kravchenko is a seasoned ML engineer currently working as a Senior Staff Machine Learning Engineer at Instrumental. Table of Contents Part 1 1 Essentials of machine learning system design 2 Is there a problem? 3 Preliminary research 4 Design document Part 2 5 Loss functions and metrics 6 Gathering datasets 7 Validation schemas 8 Baseline solution Part 3 9 Error analysis 10 Training pipelines 11 Features and feature engineering 12 Measuring and reporting results Part 4 13 Integration 14 Monitoring and reliability 15 Serving and inference optimization 16 Ownership and maintenance
Practical Machine Learning On Databricks
DOWNLOAD
Author : Debu Sinha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-11-24
Practical Machine Learning On Databricks written by Debu Sinha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-24 with Computers categories.
Take your machine learning skills to the next level by mastering databricks and building robust ML pipeline solutions for future ML innovations Key Features Learn to build robust ML pipeline solutions for databricks transition Master commonly available features like AutoML and MLflow Leverage data governance and model deployment using MLflow model registry Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionUnleash the potential of databricks for end-to-end machine learning with this comprehensive guide, tailored for experienced data scientists and developers transitioning from DIY or other cloud platforms. Building on a strong foundation in Python, Practical Machine Learning on Databricks serves as your roadmap from development to production, covering all intermediary steps using the databricks platform. You’ll start with an overview of machine learning applications, databricks platform features, and MLflow. Next, you’ll dive into data preparation, model selection, and training essentials and discover the power of databricks feature store for precomputing feature tables. You’ll also learn to kickstart your projects using databricks AutoML and automate retraining and deployment through databricks workflows. By the end of this book, you’ll have mastered MLflow for experiment tracking, collaboration, and advanced use cases like model interpretability and governance. The book is enriched with hands-on example code at every step. While primarily focused on generally available features, the book equips you to easily adapt to future innovations in machine learning, databricks, and MLflow.What you will learn Transition smoothly from DIY setups to databricks Master AutoML for quick ML experiment setup Automate model retraining and deployment Leverage databricks feature store for data prep Use MLflow for effective experiment tracking Gain practical insights for scalable ML solutions Find out how to handle model drifts in production environments Who this book is forThis book is for experienced data scientists, engineers, and developers proficient in Python, statistics, and ML lifecycle looking to transition to databricks from DIY clouds. Introductory Spark knowledge is a must to make the most out of this book, however, end-to-end ML workflows will be covered. If you aim to accelerate your machine learning workflows and deploy scalable, robust solutions, this book is an indispensable resource.
Mastering Mlops Architecture From Code To Deployment
DOWNLOAD
Author : Raman Jhajj
language : en
Publisher: BPB Publications
Release Date : 2023-12-12
Mastering Mlops Architecture From Code To Deployment written by Raman Jhajj and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-12 with Computers categories.
Harness the power of MLOps for managing real time machine learning project cycle KEY FEATURES ● Comprehensive coverage of MLOps concepts, architecture, tools and techniques. ● Practical focus on building end-to-end ML Systems for Continual Learning with MLOps. ● Actionable insights on CI/CD, monitoring, continual model training and automated retraining. DESCRIPTION MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems. By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth. Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make their ML systems more reliable, robust and production-ready. Overall, the book is an indispensable guide to MLOps and its applications for delivering business value through continuous machine learning and AI. WHAT YOU WILL LEARN ● Architect robust MLOps infrastructure with components like feature stores. ● Leverage MLOps tools like model registries, metadata stores, pipelines. ● Build CI/CD workflows to deploy models faster and continually. ● Monitor and maintain models in production to detect degradation. ● Create automated workflows for retraining and updating models in production. WHO THIS BOOK IS FOR Machine learning specialists, data scientists, DevOps professionals, software development teams, and all those who want to adopt the DevOps approach in their agile machine learning experiments and applications. Prior knowledge of machine learning and Python programming is desired. TABLE OF CONTENTS 1. Getting Started with MLOps 2. MLOps Architecture and Components 3. MLOps Infrastructure and Tools 4. What are Machine Learning Systems? 5. Data Preparation and Model Development 6. Model Deployment and Serving 7. Continuous Delivery of Machine Learning Models 8. Continual Learning 9. Continuous Monitoring, Logging, and Maintenance
Building Llm Powered Applications
DOWNLOAD
Author : Valentina Alto
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-05-22
Building Llm Powered Applications written by Valentina Alto and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-22 with Computers categories.
Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Embed LLMs into real-world applications Use LangChain to orchestrate LLMs and their components within applications Grasp basic and advanced techniques of prompt engineering Book DescriptionBuilding LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer, ultimately paving the way for the emergence of large foundation models (LFMs) that extend the boundaries of AI capabilities. The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain, we guide you through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio. Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.What you will learn Explore the core components of LLM architecture, including encoder-decoder blocks and embeddings Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM Use AI orchestrators like LangChain, with Streamlit for the frontend Get familiar with LLM components such as memory, prompts, and tools Learn how to use non-parametric knowledge and vector databases Understand the implications of LFMs for AI research and industry applications Customize your LLMs with fine tuning Learn about the ethical implications of LLM-powered applications Who this book is for Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics. We don’t assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
Mlops In Practice
DOWNLOAD
Author : Diego Rodrigues
language : en
Publisher: StudioD21
Release Date : 2025-02-11
Mlops In Practice written by Diego Rodrigues and has been published by StudioD21 this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-11 with Business & Economics categories.
MLOps IN PRACTICE is an essential guide for professionals looking to take Machine Learning models from experimentation to production with efficiency, scalability, and continuous automation. In this book, you will learn how to implement robust pipelines, monitor AI models in real time, and apply the best MLOps practices to ensure performance, reliability, and governance in Artificial Intelligence projects. Written by Diego Rodrigues, a best-selling author with over 180 titles published in six languages, this book combines theory and practice, offering a modern and applied approach to the current MLOps landscape. Throughout the chapters, you will explore essential frameworks and tools such as Docker, Kubernetes, CI/CD for Machine Learning, MLflow, TensorFlow Extended (TFX), FastAPI, and more. You will learn how to: Automate and scale Machine Learning pipelines with advanced versioning and monitoring techniques. Implement CI/CD for AI models, ensuring continuous training, deployment, and retraining. Manage models in production by applying observability, traceability, and bias mitigation practices. Utilize leading industry tools such as Kubeflow, MLflow, Airflow, and TFX to orchestrate ML workflows. Enhance AI governance and security, ensuring compliance with regulations and international standards. With practical examples, case studies, and established frameworks, MasterTech: MLOps in Practice is not just a technical manual—it is an indispensable resource for data scientists, ML engineers, software architects, and technology leaders looking to implement MLOps strategically and at scale. Get ready to revolutionize the way you manage AI models in production and master the most advanced MLOps techniques in 2025! TAGS: Python Java Linux Kali HTML ASP.NET Ada Assembly BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Regression Logistic Regression Decision Trees Random Forests AI ML K-Means Clustering Support Vector Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF AWS Google Cloud IBM Azure Databricks Nvidia Meta Power BI IoT CI/CD Hadoop Spark Dask SQLAlchemy Web Scraping MySQL Big Data Science OpenAI ChatGPT Handler RunOnUiThread() Qiskit Q# Cassandra Bigtable VIRUS MALWARE Information Pen Test Cybersecurity Linux Distributions Ethical Hacking Vulnerability Analysis System Exploration Wireless Attacks Web Application Security Malware Analysis Social Engineering Social Engineering Toolkit SET Computer Science IT Professionals Careers Expertise Library Training Operating Systems Security Testing Penetration Test Cycle Mobile Techniques Industry Global Trends Tools Framework Network Security Courses Tutorials Challenges Landscape Cloud Threats Compliance Research Technology Flutter Ionic Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Bitrise Actions Material Design Cupertino Fastlane Appium Selenium Jest Visual Studio AR VR sql deepseek mysql startup digital marketing
Databricks Data Intelligence Platform
DOWNLOAD
Author : Nikhil Gupta
language : en
Publisher: Springer Nature
Release Date : 2024-10-12
Databricks Data Intelligence Platform written by Nikhil Gupta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-12 with Computers categories.
This book is your comprehensive guide to building robust Generative AI solutions using the Databricks Data Intelligence Platform. Databricks is the fastest-growing data platform offering unified analytics and AI capabilities within a single governance framework, enabling organizations to streamline their data processing workflows, from ingestion to visualization. Additionally, Databricks provides features to train a high-quality large language model (LLM), whether you are looking for Retrieval-Augmented Generation (RAG) or fine-tuning. Databricks offers a scalable and efficient solution for processing large volumes of both structured and unstructured data, facilitating advanced analytics, machine learning, and real-time processing. In today's GenAI world, Databricks plays a crucial role in empowering organizations to extract value from their data effectively, driving innovation and gaining a competitive edge in the digital age. This book will not only help you master the Data Intelligence Platform but also help power your enterprise to the next level with a bespoke LLM unique to your organization. Beginning with foundational principles, the book starts with a platform overview and explores features and best practices for ingestion, transformation, and storage with Delta Lake. Advanced topics include leveraging Databricks SQL for querying and visualizing large datasets, ensuring data governance and security with Unity Catalog, and deploying machine learning and LLMs using Databricks MLflow for GenAI. Through practical examples, insights, and best practices, this book equips solution architects and data engineers with the knowledge to design and implement scalable data solutions, making it an indispensable resource for modern enterprises. Whether you are new to Databricks and trying to learn a new platform, a seasoned practitioner building data pipelines, data science models, or GenAI applications, or even an executive who wants to communicate the value of Databricks to customers, this book is for you. With its extensive feature and best practice deep dives, it also serves as an excellent reference guide if you are preparing for Databricks certification exams. What You Will Learn Foundational principles of Lakehouse architecture Key features including Unity Catalog, Databricks SQL (DBSQL), and Delta Live Tables Databricks Intelligence Platform and key functionalities Building and deploying GenAI Applications from data ingestion to model serving Databricks pricing, platform security, DBRX, and many more topics Who This Book Is For Solution architects, data engineers, data scientists, Databricks practitioners, and anyone who wants to deploy their Gen AI solutions with the Data Intelligence Platform. This is also a handbook for senior execs who need to communicate the value of Databricks to customers. People who are new to the Databricks Platform and want comprehensive insights will find the book accessible.
Ultimate Snowflake Cortex Ai For Generative Ai Applications
DOWNLOAD
Author : Krishnan Srinivasan
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2025-06-21
Ultimate Snowflake Cortex Ai For Generative Ai Applications written by Krishnan Srinivasan and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-21 with Computers categories.
TAGLINE Power your AI Journey and Build the Future with Snowflake Cortex. KEY FEATURES ● Build enterprise-ready GenAI apps using Snowflake Cortex tools and APIs. ● Implement RAG, AI Agents, and Document AI with real-world precision. ● Explore practical Cortex use cases across industries and domains. DESCRIPTION Snowflake Cortex is redefining how modern enterprises build, scale, and deploy Generative AI—natively within the data cloud. Ultimate Snowflake Cortex AI for Generative AI Applications is a hands-on, end-to-end guide designed for data professionals, engineers, and technical leaders eager to unlock the full power of Snowflake’s native AI engine. The book begins by grounding you in the fundamentals of AI/ML within the Snowflake ecosystem before diving deep into the architecture, capabilities, and use cases of Snowflake Cortex. As you progress, you’ll explore Cortex’s built-in machine learning functions, dive into prompt engineering, Retrieval-Augmented Generation (RAG), and learn how to leverage LLM functions effectively. You'll gain hands-on experience in fine-tuning models, translating natural language queries into actionable insights, and automating document processing using Cortex’s Document AI. Practical chapters on security, governance, and cost discipline ensure you're prepared for enterprise-scale AI deployment. With real-world case studies and cross-industry applications, this book equips you with both the strategic understanding and technical skills to implement Generative AI at scale. Cortex is the future of enterprise AI—don’t just adapt to it, lead it. WHAT WILL YOU LEARN ● Build and deploy Generative AI apps using Snowflake Cortex. ● Understand and apply Cortex's built-in LLM functions effectively. ● Fine-tune LLMs for domain-specific, enterprise-grade applications. ● Use RAG and prompt engineering for accurate AI responses. ● Extract insights from structured and unstructured enterprise data. ● Automate document workflows using Cortex’s Document AI features. ● Solve cross-industry problems with real-world Cortex implementations. WHO IS THIS BOOK FOR? The book is tailored for data scientists, engineers, analysts, and technical leaders looking to harness the power of Generative AI using Snowflake Cortex. A basic understanding of AI/ML concepts, along with familiarity in SQL, Python, and Snowflake, will help readers fully benefit from the practical examples. TABLE OF CONTENTS 1. Introduction to AI/ML in the Snowflake Ecosystem 2. Understanding Snowflake Cortex 3. Overview of Machine Learning Functions 4. Introduction to LLMs, Prompt Engineering, and RAG 5. LLM Functions in Cortex AI 6. Fine-Tuning Large Language Models in Cortex 7. Natural Language Queries to Actionable Insights 8. Unlocking Document Intelligence with Document AI 9. Implementing Cortex with Security, Governance, and Cost Discipline 10. Industry Use Cases and Case Studies 11. Conclusion and Next Steps Index