Federated Learning And Ai For Healthcare 5 0

DOWNLOAD
Download Federated Learning And Ai For Healthcare 5 0 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Federated Learning And Ai For Healthcare 5 0 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Federated Learning And Ai For Healthcare 5 0
DOWNLOAD
Author : Hassan, Ahdi
language : en
Publisher: IGI Global
Release Date : 2023-12-18
Federated Learning And Ai For Healthcare 5 0 written by Hassan, Ahdi and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-18 with Medical categories.
The Healthcare sector is evolving with Healthcare 5.0, promising better patient care and efficiency. However, challenges like data security and analysis arise due to increased digitization. Federated Learning and AI for Healthcare 5.0 offers solutions, explaining cloud computing's role in managing data and advocating for security measures. It explores federated learning's use in maintaining data privacy during analysis, presenting practical cases for implementation. The book also addresses emerging tech like quantum computing and blockchain-based services, envisioning an innovative Healthcare 5.0. It empowers healthcare professionals, IT experts, and data scientists to leverage these technologies for improved patient care and system efficiency, making Healthcare 5.0 secure and patient centric.
Federated Learning Systems
DOWNLOAD
Author : Muhammad Habib ur Rehman
language : en
Publisher: Springer Nature
Release Date : 2021-06-11
Federated Learning Systems written by Muhammad Habib ur Rehman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-11 with Technology & Engineering categories.
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Federated Learning And Privacy Preserving In Healthcare Ai
DOWNLOAD
Author : Lilhore, Umesh Kumar
language : en
Publisher: IGI Global
Release Date : 2024-05-02
Federated Learning And Privacy Preserving In Healthcare Ai written by Lilhore, Umesh Kumar and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-02 with Medical categories.
The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.
Artificial Intelligence In Healthcare
DOWNLOAD
Author : Adam Bohr
language : en
Publisher: Academic Press
Release Date : 2020-06-21
Artificial Intelligence In Healthcare written by Adam Bohr and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-21 with Computers categories.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Healthcare 4 0
DOWNLOAD
Author : Janya Chanchaichujit
language : en
Publisher: Springer
Release Date : 2019-07-23
Healthcare 4 0 written by Janya Chanchaichujit and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-23 with Business & Economics categories.
This book aims to demonstrate the benefits of implementing Industry 4.0 in healthcare services and to recommend a framework to support this implementation. Key topics in this book include: (1) Discovering emerging technologies and techniques to support Healthcare 4.0, this includes the Internet of Things (IOT) , Big data analytics, Blockchain, Artificial Intelligence (AI) , Optimisation and Predictive Analytics; (2) Illustrating some examples of such advanced implementation in Healthcare 4.0; (3) Recommending a development process to develop health technology start-ups and entrepreneurial activities; and (4) Discuss the transformation methodology used to redesign healthcare processes in order to overcome the challenges of implementing a Healthcare 4.0 project.
Distributed Collaborative And Federated Learning And Affordable Ai And Healthcare For Resource Diverse Global Health
DOWNLOAD
Author : Shadi Albarqouni
language : en
Publisher: Springer Nature
Release Date : 2022-10-08
Distributed Collaborative And Federated Learning And Affordable Ai And Healthcare For Resource Diverse Global Health written by Shadi Albarqouni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-08 with Computers categories.
This book constitutes the refereed proceedings of the Third MICCAI Workshop on Distributed, Collaborative, and Federated Learning, DeCaF 2022, and the Second MICCAI Workshop on Affordable AI and Healthcare, FAIR 2022, held in conjunction with MICCAI 2022, in Singapore in September 2022. FAIR 2022 was held as a hybrid event. DeCaF 2022 accepted 14 papers from the 18 submissions received. The workshop aims at creating a scientific discussion focusing on the comparison, evaluation, and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases or where information privacy is a priority. For FAIR 2022, 4 papers from 9 submissions were accepted for publication. The topics of the accepted submissions focus on deep ultrasound segmentation, portable OCT image quality enhancement, self-attention deep networks and knowledge distillation in low-regime setting.
Advancing Software Engineering Through Ai Federated Learning And Large Language Models
DOWNLOAD
Author : Sharma, Avinash Kumar
language : en
Publisher: IGI Global
Release Date : 2024-05-02
Advancing Software Engineering Through Ai Federated Learning And Large Language Models written by Sharma, Avinash Kumar and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-02 with Computers categories.
The rapid evolution of software engineering demands innovative approaches to meet the growing complexity and scale of modern software systems. Traditional methods often need help to keep pace with the demands for efficiency, reliability, and scalability. Manual development, testing, and maintenance processes are time-consuming and error-prone, leading to delays and increased costs. Additionally, integrating new technologies, such as AI, ML, Federated Learning, and Large Language Models (LLM), presents unique challenges in terms of implementation and ethical considerations. Advancing Software Engineering Through AI, Federated Learning, and Large Language Models provides a compelling solution by comprehensively exploring how AI, ML, Federated Learning, and LLM intersect with software engineering. By presenting real-world case studies, practical examples, and implementation guidelines, the book ensures that readers can readily apply these concepts in their software engineering projects. Researchers, academicians, practitioners, industrialists, and students will benefit from the interdisciplinary insights provided by experts in AI, ML, software engineering, and ethics.
Innovative Computing And Communications
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2024-07-23
Innovative Computing And Communications written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-23 with Technology & Engineering categories.
This book includes high-quality research papers presented at the Seventh International Conference on Innovative Computing and Communication (ICICC 2024), which is held at the Shaheed Sukhdev College of Business Studies, University of Delhi, Delhi, India, on 16–17 February 2024. Introducing the innovative works of scientists, professors, research scholars, students, and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.
Federated Learning For Digital Healthcare Systems
DOWNLOAD
Author : Agbotiname Lucky Imoize
language : en
Publisher: Elsevier
Release Date : 2024-06-02
Federated Learning For Digital Healthcare Systems written by Agbotiname Lucky Imoize and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-02 with Computers categories.
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance.In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry
Revolutionizing Healthcare 5 0 The Power Of Generative Ai
DOWNLOAD
Author : Pronaya Bhattacharya
language : en
Publisher: Springer Nature
Release Date : 2025-02-18
Revolutionizing Healthcare 5 0 The Power Of Generative Ai written by Pronaya Bhattacharya and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-18 with Technology & Engineering categories.
This book serves as a critical resource that bridges the gap between burgeoning technology and its practical implementation. The book starts with an in-depth exploration of healthcare 5.0 principles, laying the foundation for the reader to understand the current shifts in healthcare paradigms. Then, it dives into the intricacies of generative models in healthcare, detailing how these algorithms work and the applications they serve. The book further delves into the subsets of generative machine learning and deep learning techniques in healthcare. As we move towards more complex applications, the book takes a turn to address the critical subject of interpretability and explainability in generative models, a topic that resonates profoundly given the life-critical nature of medical decisions. Finally, the book concludes with a robust discussion on the security and privacy concerns that accompany the deployment of GAI in real healthcare settings. By offering a multidimensional viewpoint—coupled with case studies, statistical analyses, and expert insights—the book ensures that the reader is left with a nuanced understanding of how GAI can be both a boon and a challenge in healthcare. As such, the proposed book serves as an indispensable resource for healthcare professionals, data scientists, researchers, and anyone invested in the future of healthcare and AI.