Federated Learning Systems

DOWNLOAD
Download Federated Learning Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Federated Learning Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Federated Learning Systems
DOWNLOAD
Author : Muhammad Habib ur Rehman
language : en
Publisher: Springer Nature
Release Date : 2021-06-11
Federated Learning Systems written by Muhammad Habib ur Rehman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-11 with Technology & Engineering categories.
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Federated Learning Systems
DOWNLOAD
Author : Muhammad Habib ur Rehman
language : en
Publisher: Springer Nature
Release Date : 2025-04-26
Federated Learning Systems written by Muhammad Habib ur Rehman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-26 with Computers categories.
This book dives deep into both industry implementations and cutting-edge research driving the Federated Learning (FL) landscape forward. FL enables decentralized model training, preserves data privacy, and enhances security without relying on centralized datasets. Industry pioneers like NVIDIA have spearheaded the development of general-purpose FL platforms, revolutionizing how companies harness distributed data. Alternately, for medical AI, FL platforms, such as FedBioMed, enable collaborative model development across healthcare institutions to unlock massive value. Research advances in PETs highlight ongoing efforts to ensure that FL is robust, secure, and scalable. Looking ahead, federated learning could transform public health by enabling global collaboration on disease prevention while safeguarding individual privacy. From recommendation systems to cybersecurity applications, FL is poised to reshape multiple domains, driving a future where collaboration and privacy coexist seamlessly.
Federated Learning
DOWNLOAD
Author : Heiko Ludwig
language : en
Publisher: Springer Nature
Release Date : 2022-07-07
Federated Learning written by Heiko Ludwig and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-07 with Computers categories.
Federated Learning: A Comprehensive Overview of Methods and Applications presents an in-depth discussion of the most important issues and approaches to federated learning for researchers and practitioners. Federated Learning (FL) is an approach to machine learning in which the training data are not managed centrally. Data are retained by data parties that participate in the FL process and are not shared with any other entity. This makes FL an increasingly popular solution for machine learning tasks for which bringing data together in a centralized repository is problematic, either for privacy, regulatory or practical reasons. This book explains recent progress in research and the state-of-the-art development of Federated Learning (FL), from the initial conception of the field to first applications and commercial use. To obtain this broad and deep overview, leading researchers address the different perspectives of federated learning: the core machine learning perspective, privacy and security, distributed systems, and specific application domains. Readers learn about the challenges faced in each of these areas, how they are interconnected, and how they are solved by state-of-the-art methods. Following an overview on federated learning basics in the introduction, over the following 24 chapters, the reader will dive deeply into various topics. A first part addresses algorithmic questions of solving different machine learning tasks in a federated way, how to train efficiently, at scale, and fairly. Another part focuses on providing clarity on how to select privacy and security solutions in a way that can be tailored to specific use cases, while yet another considers the pragmatics of the systems where the federated learning process will run. The book also covers other important use cases for federated learning such as split learning and vertical federated learning. Finally, the book includes some chapters focusing on applying FL in real-world enterprise settings.
Federated Learning With Python
DOWNLOAD
Author : Kiyoshi Nakayama PhD
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-10-28
Federated Learning With Python written by Kiyoshi Nakayama PhD and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-28 with Computers categories.
Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next level Key FeaturesDesign distributed systems that can be applied to real-world federated learning applications at scaleDiscover multiple aggregation schemes applicable to various ML settings and applicationsDevelop a federated learning system that can be tested in distributed machine learning settingsBook Description Federated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples. FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you'll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature. By the end of this book, you'll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments. What you will learnDiscover the challenges related to centralized big data ML that we currently face along with their solutionsUnderstand the theoretical and conceptual basics of FLAcquire design and architecting skills to build an FL systemExplore the actual implementation of FL servers and clientsFind out how to integrate FL into your own ML applicationUnderstand various aggregation mechanisms for diverse ML scenariosDiscover popular use cases and future trends in FLWho this book is for This book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You'll need basic knowledge of Python programming and machine learning concepts to get started with this book.
Federated Learning From Algorithms To System Implementation
DOWNLOAD
Author : Liefeng Bo
language : en
Publisher: World Scientific
Release Date : 2024-08-16
Federated Learning From Algorithms To System Implementation written by Liefeng Bo and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-16 with Computers categories.
Authored by researchers and practitioners who build cutting-edge federated learning applications to solve real-world problems, this book covers the spectrum of federated learning technology from concepts and application scenarios to advanced algorithms and finally system implementation in three parts. It provides a comprehensive review and summary of federated learning technology, as well as presenting numerous novel federated learning algorithms which no other books have summarized. The work also references the most recent papers, articles and reviews from the past several years to keep pace with the academic and industrial state of the art of federated learning.The first part lays a foundational understanding of federated learning by going through its definition and characteristics, and also possible application scenarios and related privacy protection technologies. The second part elaborates on some of the federated learning algorithms innovated by JD Technology which encompass both vertical and horizontal scenarios, including vertical federated tree models, linear regression, kernel learning, asynchronous methods, deep learning, homomorphic encryption, and reinforcement learning. The third and final part shifts in scope to federated learning systems — namely JD Technology's own FedLearn system — by discussing its design and implementation using gRPC, in addition to specific performance optimization techniques plus integration with blockchain technology.This book will serve as a great reference for readers who are experienced in federated learning algorithms, building privacy-preserving machine learning applications or solving real-world problems with privacy-restricted scenarios.
Federated Learning
DOWNLOAD
Author : M. Irfan Uddin
language : en
Publisher: CRC Press
Release Date : 2024-09-06
Federated Learning written by M. Irfan Uddin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-06 with Computers categories.
Federated Learning: Unlocking the Power of Collaborative Intelligence is a definitive guide to the transformative potential of federated learning. This book delves into federated learning principles, techniques, and applications, and offers practical insights and real-world case studies to showcase its capabilities and benefits. The book begins with a survey of the fundamentals of federated learning and its significance in the era of privacy concerns and data decentralization. Through clear explanations and illustrative examples, the book presents various federated learning frameworks, architectures, and communication protocols. Privacy-preserving mechanisms are also explored, such as differential privacy and secure aggregation, offering the practical knowledge needed to address privacy challenges in federated learning systems. This book concludes by highlighting the challenges and emerging trends in federated learning, emphasizing the importance of trust, fairness, and accountability, and provides insights into scalability and efficiency considerations. With detailed case studies and step-by-step implementation guides, this book shows how to build and deploy federated learning systems in real-world scenarios – such as in healthcare, finance, Internet of things (IoT), and edge computing. Whether you are a researcher, a data scientist, or a professional exploring the potential of federated learning, this book will empower you with the knowledge and practical tools needed to unlock the power of federated learning and harness the collaborative intelligence of distributed systems. Key Features: Provides a comprehensive guide on tools and techniques of federated learning Highlights many practical real-world examples Includes easy-to-understand explanations
Deep Learning Systems
DOWNLOAD
Author : Andres Rodriguez
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Deep Learning Systems written by Andres Rodriguez and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
This book describes deep learning systems: the algorithms, compilers, and processor components to efficiently train and deploy deep learning models for commercial applications. The exponential growth in computational power is slowing at a time when the amount of compute consumed by state-of-the-art deep learning (DL) workloads is rapidly growing. Model size, serving latency, and power constraints are a significant challenge in the deployment of DL models for many applications. Therefore, it is imperative to codesign algorithms, compilers, and hardware to accelerate advances in this field with holistic system-level and algorithm solutions that improve performance, power, and efficiency. Advancing DL systems generally involves three types of engineers: (1) data scientists that utilize and develop DL algorithms in partnership with domain experts, such as medical, economic, or climate scientists; (2) hardware designers that develop specialized hardware to accelerate the components in the DL models; and (3) performance and compiler engineers that optimize software to run more efficiently on a given hardware. Hardware engineers should be aware of the characteristics and components of production and academic models likely to be adopted by industry to guide design decisions impacting future hardware. Data scientists should be aware of deployment platform constraints when designing models. Performance engineers should support optimizations across diverse models, libraries, and hardware targets. The purpose of this book is to provide a solid understanding of (1) the design, training, and applications of DL algorithms in industry; (2) the compiler techniques to map deep learning code to hardware targets; and (3) the critical hardware features that accelerate DL systems. This book aims to facilitate co-innovation for the advancement of DL systems. It is written for engineers working in one or more of these areas who seek to understand the entire system stack in order to bettercollaborate with engineers working in other parts of the system stack. The book details advancements and adoption of DL models in industry, explains the training and deployment process, describes the essential hardware architectural features needed for today's and future models, and details advances in DL compilers to efficiently execute algorithms across various hardware targets. Unique in this book is the holistic exposition of the entire DL system stack, the emphasis on commercial applications, and the practical techniques to design models and accelerate their performance. The author is fortunate to work with hardware, software, data scientist, and research teams across many high-technology companies with hyperscale data centers. These companies employ many of the examples and methods provided throughout the book.
Federated Learning Based Intelligent Systems To Handle Issues And Challenges In Iovs Part 1
DOWNLOAD
Author : Shelly Gupta, Puneet Garg, Jyoti Agarwal, Hardeo Kumar Thakur, Satya Prakash Yadav
language : en
Publisher: Bentham Science Publishers
Release Date : 2024-12-13
Federated Learning Based Intelligent Systems To Handle Issues And Challenges In Iovs Part 1 written by Shelly Gupta, Puneet Garg, Jyoti Agarwal, Hardeo Kumar Thakur, Satya Prakash Yadav and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-13 with Computers categories.
Federated Learning Based Intelligent Systems to Handle Issues and Challenges in IoVs (Part 1) examines how federated learning can address key challenges within the Internet of Vehicles, from data security to routing efficiency. This volume explores how federated learning, a decentralized approach to machine learning, enables secure and adaptive IoV systems that enhance road safety, optimize traffic flow, and support reliable data sharing. Chapters cover essential topics, including technologies to address IoV routing issues, secure data exchange using blockchain, privacy-preserving methods, and NLP applications for vehicle safety. By combining theoretical insights with practical solutions, the book highlights how federated learning fosters scalable, resilient IoV systems that respond dynamically to the demands of connected vehicles. Key Features: - Addresses data privacy, secure communication, and adaptive solutions in IoV - Explores federated learning applications in real-time IoV systems - Combines practical examples with theoretical foundations in IoV technology - Includes emerging research areas in IoV federated learning frameworks
Blockchain Metaverse And Trustworthy Systems
DOWNLOAD
Author : Debiao He
language : en
Publisher: Springer Nature
Release Date : 2025-01-27
Blockchain Metaverse And Trustworthy Systems written by Debiao He and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-27 with Computers categories.
This two-volume set CCIS 2264 and CCIS 2265 constitutes the refereed proceedings of the 6th International Conference on Blockchain and Trustworthy Systems, BlockSys 2024, held in Hangzhou, China, during July 12–14, 2024. The 34 full papers presented in these two volumes were carefully reviewed and selected from 74 submissions. The papers are organized in the following topical sections: Part I: Blockchain and Data Mining; Data Security and Anomaly Detection; Blockchain Performance Optimization. Part II: Frontier Technology Integration; Trustworthy System and Cryptocurrencies; Blockchain Applications.
Federated Learning
DOWNLOAD
Author : Jayakrushna Sahoo
language : en
Publisher: CRC Press
Release Date : 2024-09-20
Federated Learning written by Jayakrushna Sahoo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-20 with Computers categories.
This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well. The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems. The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included. This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.