Financial Data Analytics With Machine Learning Optimization And Statistics

DOWNLOAD
Download Financial Data Analytics With Machine Learning Optimization And Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Financial Data Analytics With Machine Learning Optimization And Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Financial Data Analytics With Machine Learning Optimization And Statistics
DOWNLOAD
Author : Sam Chen
language : en
Publisher: John Wiley & Sons
Release Date : 2024-10-18
Financial Data Analytics With Machine Learning Optimization And Statistics written by Sam Chen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-18 with Business & Economics categories.
An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofs—especially of key results—and includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. The book begins with a brief introduction to basic sampling theory and the fundamentals of simulation techniques, followed by a comparison between R and Python. It then discusses statistical diagnosis for financial security data and introduces some common tools in financial forensics such as Benford's Law, Zipf's Law, and anomaly detection. The statistical estimation and Expectation-Maximization (EM) & Majorization-Minimization (MM) algorithms are also covered. The book next focuses on univariate and multivariate dynamic volatility and correlation forecasting, and emphasis is placed on the celebrated Kelly's formula, followed by a brief introduction to quantitative risk management and dependence modelling for extremal events. A practical topic on numerical finance for traditional option pricing and Greek computations immediately follows as well as other important topics in financial data-driven aspects, such as Principal Component Analysis (PCA) and recommender systems with their applications, as well as advanced regression learners such as kernel regression and logistic regression, with discussions on model assessment methods such as simple Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) for typical classification problems. The book then moves on to other commonly used machine learning tools like linear classifiers such as perceptrons and their generalization, the multilayered counterpart (MLP), Support Vector Machines (SVM), as well as Classification and Regression Trees (CART) and Random Forests. Subsequent chapters focus on linear Bayesian learning, including well-received credibility theory in actuarial science and functional kernel regression, and non-linear Bayesian learning, such as the Naïve Bayes classifier and the Comonotone-Independence Bayesian Classifier (CIBer) recently independently developed by the authors and used successfully in InsurTech. After an in-depth discussion on cluster analyses such as K-means clustering and its inversion, the K-nearest neighbor (KNN) method, the book concludes by introducing some useful deep neural networks for FinTech, like the potential use of the Long-Short Term Memory model (LSTM) for stock price prediction. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisions To apply effective data dimension reduction tools to enhance supervised learning To describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking.
Financial Data Analytics With Machine Learning Optimization And Statistics
DOWNLOAD
Author : Sam Chen
language : en
Publisher: John Wiley & Sons
Release Date : 2024-10-21
Financial Data Analytics With Machine Learning Optimization And Statistics written by Sam Chen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-21 with Business & Economics categories.
An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofs—especially of key results—and includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. The book begins with a brief introduction to basic sampling theory and the fundamentals of simulation techniques, followed by a comparison between R and Python. It then discusses statistical diagnosis for financial security data and introduces some common tools in financial forensics such as Benford's Law, Zipf's Law, and anomaly detection. The statistical estimation and Expectation-Maximization (EM) & Majorization-Minimization (MM) algorithms are also covered. The book next focuses on univariate and multivariate dynamic volatility and correlation forecasting, and emphasis is placed on the celebrated Kelly's formula, followed by a brief introduction to quantitative risk management and dependence modelling for extremal events. A practical topic on numerical finance for traditional option pricing and Greek computations immediately follows as well as other important topics in financial data-driven aspects, such as Principal Component Analysis (PCA) and recommender systems with their applications, as well as advanced regression learners such as kernel regression and logistic regression, with discussions on model assessment methods such as simple Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) for typical classification problems. The book then moves on to other commonly used machine learning tools like linear classifiers such as perceptrons and their generalization, the multilayered counterpart (MLP), Support Vector Machines (SVM), as well as Classification and Regression Trees (CART) and Random Forests. Subsequent chapters focus on linear Bayesian learning, including well-received credibility theory in actuarial science and functional kernel regression, and non-linear Bayesian learning, such as the Naïve Bayes classifier and the Comonotone-Independence Bayesian Classifier (CIBer) recently independently developed by the authors and used successfully in InsurTech. After an in-depth discussion on cluster analyses such as K-means clustering and its inversion, the K-nearest neighbor (KNN) method, the book concludes by introducing some useful deep neural networks for FinTech, like the potential use of the Long-Short Term Memory model (LSTM) for stock price prediction. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisions To apply effective data dimension reduction tools to enhance supervised learning To describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking.
Financial Data Science With Sas
DOWNLOAD
Author : Babatunde O Odusami
language : en
Publisher: SAS Institute
Release Date : 2024-06-14
Financial Data Science With Sas written by Babatunde O Odusami and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-14 with Computers categories.
Explore financial data science using SAS. Financial Data Science with SAS provides readers with a comprehensive explanation of the theoretical and practical implementation of the various types of analytical techniques and quantitative tools that are used in the financial services industry. This book shows readers how to implement data visualization, simulation, statistical predictive models, machine learning models, and financial optimizations using real-world examples in the SAS Analytics environment. Each chapter ends with practice exercises that include use case scenarios to allow readers to test their knowledge. Designed for university students and financial professionals interested in boosting their data science skills, Financial Data Science with SAS is an essential reference guide for understanding how data science is used in the financial services industry and for learning how to use SAS to solve complex business problems.
Six Sigma For Continuous Improvement In Cybersecurity
DOWNLOAD
Author : Emre Tokgoz
language : en
Publisher: Springer Nature
Release Date : 2025-06-17
Six Sigma For Continuous Improvement In Cybersecurity written by Emre Tokgoz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-17 with Computers categories.
This textbook is designed to teach students and practitioners how to integrate Six Sigma techniques with cybersecurity applications, specifically in training current and future cybersecurity professionals. It utilizes the DMAIC process (Define, Measure, Analyze, Improve, and Control) to strengthen cybersecurity defenses against cyber-attacks while reducing costs and waste. Recognizing that Six Sigma training requires a solid understanding of statistics and technology for effective data analysis, the book covers relevant statistical concepts along with essential Six Sigma, Lean, quality, and technology principles. These are crucial for readers to understand, adopt, and implement continuous improvement strategies in the workplace, ultimately making them a part of their cybersecurity project management culture. This book is suitable for undergraduate courses, depending on the curriculum's specific statistics and technology requirements. It can also serve as a Six Sigma certificate training resource for professionals in the field.
Business Analytics For Professionals
DOWNLOAD
Author : Alp Ustundag
language : en
Publisher: Springer Nature
Release Date : 2022-05-09
Business Analytics For Professionals written by Alp Ustundag and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-09 with Business & Economics categories.
This book explains concepts and techniques for business analytics and demonstrate them on real life applications for managers and practitioners. It illustrates how machine learning and optimization techniques can be used to implement intelligent business automation systems. The book examines business problems concerning supply chain, marketing & CRM, financial, manufacturing and human resources functions and supplies solutions in Python.
Handbook Of Big Data Analytics
DOWNLOAD
Author : Wolfgang Karl Härdle
language : en
Publisher: Springer
Release Date : 2018-07-20
Handbook Of Big Data Analytics written by Wolfgang Karl Härdle and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-20 with Computers categories.
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
Quantitative Portfolio Management
DOWNLOAD
Author : Michael Isichenko
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-10
Quantitative Portfolio Management written by Michael Isichenko and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-10 with Business & Economics categories.
Discover foundational and advanced techniques in quantitative equity trading from a veteran insider In Quantitative Portfolio Management: The Art and Science of Statistical Arbitrage, distinguished physicist-turned-quant Dr. Michael Isichenko delivers a systematic review of the quantitative trading of equities, or statistical arbitrage. The book teaches you how to source financial data, learn patterns of asset returns from historical data, generate and combine multiple forecasts, manage risk, build a stock portfolio optimized for risk and trading costs, and execute trades. In this important book, you’ll discover: Machine learning methods of forecasting stock returns in efficient financial markets How to combine multiple forecasts into a single model by using secondary machine learning, dimensionality reduction, and other methods Ways of avoiding the pitfalls of overfitting and the curse of dimensionality, including topics of active research such as “benign overfitting” in machine learning The theoretical and practical aspects of portfolio construction, including multi-factor risk models, multi-period trading costs, and optimal leverage Perfect for investment professionals, like quantitative traders and portfolio managers, Quantitative Portfolio Management will also earn a place in the libraries of data scientists and students in a variety of statistical and quantitative disciplines. It is an indispensable guide for anyone who hopes to improve their understanding of how to apply data science, machine learning, and optimization to the stock market.
Advancement In Business Analytics Tools For Higher Financial Performance
DOWNLOAD
Author : Gharoie Ahangar, Reza
language : en
Publisher: IGI Global
Release Date : 2023-08-08
Advancement In Business Analytics Tools For Higher Financial Performance written by Gharoie Ahangar, Reza and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-08 with Business & Economics categories.
The relentless growth of data in financial markets has boosted the demand for more advanced analytical tools to facilitate and improve financial planning. The ability to constructively use this data is limited for managers and investors without the proper theoretical support. Within this context, there is an unmet demand for combining analytical finance methods with business analytics topics to inform better investment decisions. Advancement in Business Analytics Tools for Higher Financial Performance explores the financial applications of business analytics tools that can help financial managers and investors to better understand financial theory and improve institutional investment practices. This book explores the value extraction process using more accurate financial data via business analytical tools to help investors and portfolio managers develop more modern financial planning processes. Covering topics such as financial markets, investment analysis, and statistical tools, this book is ideal for accountants, data analysts, researchers, students, business professionals, academicians, and more.
Mathematical And Statistical Methods For Actuarial Sciences And Finance
DOWNLOAD
Author : Marco Corazza
language : en
Publisher: Springer Nature
Release Date : 2021-12-13
Mathematical And Statistical Methods For Actuarial Sciences And Finance written by Marco Corazza and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-13 with Business & Economics categories.
The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the International Conference eMAF2020 – Mathematical and Statistical Methods for Actuarial Sciences and Finance. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca’ Foscari University of Venice on September 18, 22 and 25, 2020. eMAF2020 is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018). This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, credit risk methods and models, dynamic optimization in finance, financial data analytics, forecasting dynamics of actuarial and financial phenomena, foreign exchange markets, insurance models, interest rate models, longevity risk, models and methods for financial time series analysis, multivariate techniques for financial markets analysis, pension systems, portfolio selection and management, real-world finance, risk analysis and management, trading systems, and others. This volume is a valuable resource for academics, PhD students, practitioners, professionals and researchers. Moreover, it is also of interest to other readers with quantitative background knowledge.
Big Data For The Greater Good
DOWNLOAD
Author : Ali Emrouznejad
language : en
Publisher: Springer
Release Date : 2018-07-13
Big Data For The Greater Good written by Ali Emrouznejad and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-13 with Technology & Engineering categories.
This book highlights some of the most fascinating current uses, thought-provoking changes, and biggest challenges that Big Data means for our society. The explosive growth of data and advances in Big Data analytics have created a new frontier for innovation, competition, productivity, and well-being in almost every sector of our society, as well as a source of immense economic and societal value. From the derivation of customer feedback-based insights to fraud detection and preserving privacy; better medical treatments; agriculture and food management; and establishing low-voltage networks – many innovations for the greater good can stem from Big Data. Given the insights it provides, this book will be of interest to both researchers in the field of Big Data, and practitioners from various fields who intend to apply Big Data technologies to improve their strategic and operational decision-making processes.