[PDF] Finite Difference Methods For Ordinary And Partial Differential Equations - eBooks Review

Finite Difference Methods For Ordinary And Partial Differential Equations


Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD

Download Finite Difference Methods For Ordinary And Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Difference Methods For Ordinary And Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Finite Difference Methods For Ordinary And Partial Differential Equations


Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01

Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.



Finite Difference Methods For Ordinary And Partial Differential Equations


Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-09-06

Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-06 with Mathematics categories.


Introductory textbook from which students can approach more advance topics relating to finite difference methods.



The Numerical Solution Of Ordinary And Partial Differential Equations


The Numerical Solution Of Ordinary And Partial Differential Equations
DOWNLOAD
Author : Granville Sewell
language : en
Publisher: Academic Press
Release Date : 2014-05-10

The Numerical Solution Of Ordinary And Partial Differential Equations written by Granville Sewell and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.



Finite Difference Schemes And Partial Differential Equations


Finite Difference Schemes And Partial Differential Equations
DOWNLOAD
Author : John C. Strikwerda
language : en
Publisher: Springer
Release Date : 1989-09-28

Finite Difference Schemes And Partial Differential Equations written by John C. Strikwerda and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-09-28 with Juvenile Nonfiction categories.




Finite Difference Methods In Financial Engineering


Finite Difference Methods In Financial Engineering
DOWNLOAD
Author : Daniel J. Duffy
language : en
Publisher: John Wiley & Sons
Release Date : 2013-10-28

Finite Difference Methods In Financial Engineering written by Daniel J. Duffy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-28 with Business & Economics categories.


The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.



Analytic Methods For Partial Differential Equations


Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.



Essential Partial Differential Equations


Essential Partial Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer
Release Date : 2015-09-24

Essential Partial Differential Equations written by David F. Griffiths and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-24 with Mathematics categories.


This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.



Finite Difference Computing With Pdes


Finite Difference Computing With Pdes
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2017-06-21

Finite Difference Computing With Pdes written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-21 with Computers categories.


This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.



Nonstandard Finite Difference Models Of Differential Equations


Nonstandard Finite Difference Models Of Differential Equations
DOWNLOAD
Author : Ronald E. Mickens
language : en
Publisher: World Scientific
Release Date : 1994

Nonstandard Finite Difference Models Of Differential Equations written by Ronald E. Mickens and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Mathematics categories.


This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.