[PDF] Finite Mixture Models - eBooks Review

Finite Mixture Models


Finite Mixture Models
DOWNLOAD

Download Finite Mixture Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Mixture Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Finite Mixture Models


Finite Mixture Models
DOWNLOAD
Author : Geoffrey McLachlan
language : en
Publisher: John Wiley & Sons
Release Date : 2004-03-22

Finite Mixture Models written by Geoffrey McLachlan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-22 with Mathematics categories.


An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.



Medical Applications Of Finite Mixture Models


Medical Applications Of Finite Mixture Models
DOWNLOAD
Author : Peter Schlattmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-02

Medical Applications Of Finite Mixture Models written by Peter Schlattmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-02 with Medical categories.


Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the “average” patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author’s point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.



Mixture Models And Applications


Mixture Models And Applications
DOWNLOAD
Author : Nizar Bouguila
language : en
Publisher: Springer
Release Date : 2019-08-13

Mixture Models And Applications written by Nizar Bouguila and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-13 with Technology & Engineering categories.


This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.



Finite Mixture And Markov Switching Models


Finite Mixture And Markov Switching Models
DOWNLOAD
Author : Sylvia Frühwirth-Schnatter
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-11-24

Finite Mixture And Markov Switching Models written by Sylvia Frühwirth-Schnatter and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-24 with Mathematics categories.


The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.



Finite Mixture Distributions


Finite Mixture Distributions
DOWNLOAD
Author : B. Everitt
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-08

Finite Mixture Distributions written by B. Everitt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-08 with Social Science categories.


Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population.



Handbook Of Mixture Analysis


Handbook Of Mixture Analysis
DOWNLOAD
Author : Sylvia Fruhwirth-Schnatter
language : en
Publisher: CRC Press
Release Date : 2019-01-04

Handbook Of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Computers categories.


Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.



Mixture Model Based Classification


Mixture Model Based Classification
DOWNLOAD
Author : Paul D. McNicholas
language : en
Publisher: CRC Press
Release Date : 2016-10-04

Mixture Model Based Classification written by Paul D. McNicholas and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-04 with Mathematics categories.


"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.



Development Of Modern Statistics And Related Topics


Development Of Modern Statistics And Related Topics
DOWNLOAD
Author : Heping Zhang
language : en
Publisher: World Scientific
Release Date : 2003

Development Of Modern Statistics And Related Topics written by Heping Zhang and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


This book encompasses a wide range of important topics. The articles cover the following areas: asymptotic theory and inference, biostatistics, economics and finance, statistical computing and Bayesian statistics, and statistical genetics. Specifically, the issues that are studied include large deviation, deviation inequalities, local sensitivity of model misspecification in likelihood inference, empirical likelihood confidence intervals, uniform convergence rates in density estimation, randomized designs in clinical trials, MCMC and EM algorithms, approximation of p-values in multipoint linkage analysis, use of mixture models in genetic studies, and design and analysis of quantitative traits.



Mixtures


Mixtures
DOWNLOAD
Author : Kerrie L. Mengersen
language : en
Publisher: John Wiley & Sons
Release Date : 2011-05-03

Mixtures written by Kerrie L. Mengersen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-03 with Mathematics categories.


This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.