Fixed Point Theory In Metric Spaces

DOWNLOAD
Download Fixed Point Theory In Metric Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fixed Point Theory In Metric Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Metric Spaces And Fixed Point Theory
DOWNLOAD
Author : Mohamed A. Khamsi
language : en
Publisher: John Wiley & Sons
Release Date : 2011-10-14
An Introduction To Metric Spaces And Fixed Point Theory written by Mohamed A. Khamsi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-14 with Mathematics categories.
Diese Einfuhrung in das Gebiet der metrischen Raume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausfuhrlich und anschaulich werden die Grundlagen von metrischen Raumen und Banach-Raumen erklart, Anhange enthalten Informationen zu verschiedenen Schlusselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschaftigen sich mit fortgeschritteneren Themen.
Fixed Point Theory In Probabilistic Metric Spaces
DOWNLOAD
Author : O. Hadzic
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Fixed Point Theory In Probabilistic Metric Spaces written by O. Hadzic and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
Metric Fixed Point Theory
DOWNLOAD
Author : Pradip Debnath
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Metric Fixed Point Theory written by Pradip Debnath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Mathematics categories.
This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.
Handbook Of Metric Fixed Point Theory
DOWNLOAD
Author : William Kirk
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-06-30
Handbook Of Metric Fixed Point Theory written by William Kirk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-30 with Mathematics categories.
Preface. 1. Contraction Mappings and Extensions; W.A. Kirk. 2. Examples of Fixed Point Free Mappings; B. Sims. 3. Classical Theory of Nonexpansive Mappings; K. Goebel, W.A. Kirk. 4. Geometrical Background of Metric Fixed Point Theory; S. Prus. 5. Some Moduli and Constants Related to Metric Fixed Point Theory; E.L. Fuster. 6. Ultra-Methods in Metric Fixed Point Theory; M.A. Khamsi, B. Sims. 7. Stability of the Fixed Point Property for Nonexpansive Mappings; J. Garcia-Falset, A. Jiménez-Melado, E. Llorens-Fuster. 8. Metric Fixed Point Results Concerning Measures of Noncompactness; T. Dominguez, M.A. JapÃ3n, G. LÃ3pez. 9. Renormings of l1 and c0 and Fixed Point Properties; P.N. Dowling, C.J. Lennard, B. Turett. 10. Nonexpansive Mappings: Boundary/Inwardness Conditions and Local Theory; W.A. Kirk, C.H. Morales. 11. Rotative Mappings and Mappings with Constant Displacement; W. Kaczor, M. Koter-MÃ3rgowska. 12. Geometric Properties Related to Fixed Point Theory in Some Banach Function Lattices; S. Chen, Y. Cui, H. Hudzik, B. Sims. 13. Introduction to Hyperconvex Spaces; R. Espinola, M.A. Khamsi. 14. Fixed Points of Holomorphic Mappings: A Metric Approach; T. Kuczumow, S. Reich, D. Shoikhet. 15. Fixed Point and Non-Linear Ergodic Theorems for Semigroups of Non-Linear Mappings; A. To-Ming Lau, W. Takahashi. 16. Generic Aspects of Metric Fixed Point Theory; S. Reich, A.J. Zaslavski. 17. Metric Environment of the Topological Fixed Point Theorms; K. Goebel. 18. Order-Theoretic Aspects of Metric Fixed Point Theory; J. Jachymski. 19. Fixed Point and Related Theorems for Set-Valued Mappings; G.X.-Z. Yuan. Index.
Fixed Point Theory In Metric Type Spaces
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer
Release Date : 2016-03-24
Fixed Point Theory In Metric Type Spaces written by Ravi P. Agarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-24 with Mathematics categories.
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
Metric Structures And Fixed Point Theory
DOWNLOAD
Author : Dhananjay Gopal
language : en
Publisher: CRC Press
Release Date : 2021-04-08
Metric Structures And Fixed Point Theory written by Dhananjay Gopal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Mathematics categories.
It is an indisputable argument that the formulation of metrics (by Fréchet in the early 1900s) opened a new subject in mathematics called non-linear analysis after the appearance of Banach’s fixed point theorem. Because the underlying space of this theorem is a metric space, the theory that developed following its publication is known as metric fixed point theory. It is well known that metric fixed point theory provides essential tools for solving problems arising in various branches of mathematics and other sciences such as split feasibility problems, variational inequality problems, non-linear optimization problems, equilibrium problems, selection and matching problems, and problems of proving the existence of solutions of integral and differential equations are closely related to fixed point theory. For this reason, many people over the past seventy years have tried to generalize the definition of metric space and corresponding fixed point theory. This trend still continues. A few questions lying at the heart of the theory remain open and there are many unanswered questions regarding the limits to which the theory may be extended. Metric Structures and Fixed Point Theory provides an extensive understanding and the latest updates on the subject. The book not only shows diversified aspects of popular generalizations of metric spaces such as symmetric, b-metric, w-distance, G-metric, modular metric, probabilistic metric, fuzzy metric, graphical metric and corresponding fixed point theory but also motivates work on existing open problems on the subject. Each of the nine chapters—contributed by various authors—contains an Introduction section which summarizes the material needed to read the chapter independently of the others and contains the necessary background, several examples, and comprehensive literature to comprehend the concepts presented therein. This is helpful for those who want to pursue their research career in metric fixed point theory and its related areas. Features Explores the latest research and developments in fixed point theory on the most popular generalizations of metric spaces Description of various generalizations of metric spaces Very new topics on fixed point theory in graphical and modular metric spaces Enriched with examples and open problems This book serves as a reference for scientific investigators who need to analyze a simple and direct presentation of the fundamentals of the theory of metric fixed points. It may also be used as a text book for postgraduate and research students who are trying to derive future research scope in this area.
Measures Of Noncompactness In Metric Fixed Point Theory
DOWNLOAD
Author : José María Ayerbe Toledano
language : en
Publisher: Springer Science & Business Media
Release Date : 1997
Measures Of Noncompactness In Metric Fixed Point Theory written by José María Ayerbe Toledano and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
This book is devoted to metric fixed point theory. The goal is to develop, in a self-contained fashion, those results in this theory which involve the use of measures of noncompactness. Some of the well-known fixed point theorems are included with several applications to the theory of differential equations. This book is mainly addressed to graduate students who wish to learn about metric fixed point theory, but it will also be useful to researchers in the area. Most of the results presented here were obtained by the authors over the last ten years and have not previously appeared in any other textbook.
Fixed Point Theory For Lipschitzian Type Mappings With Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-06-12
Fixed Point Theory For Lipschitzian Type Mappings With Applications written by Ravi P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-12 with Mathematics categories.
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
Fixed Point Theory And Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Cambridge University Press
Release Date : 2001-03-22
Fixed Point Theory And Applications written by Ravi P. Agarwal and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-03-22 with Mathematics categories.
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Fixed Point Theory In Metric Spaces
DOWNLOAD
Author : Praveen Agarwal
language : en
Publisher: Springer
Release Date : 2018-10-13
Fixed Point Theory In Metric Spaces written by Praveen Agarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-13 with Mathematics categories.
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of α-ψ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky–Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.