[PDF] Flexible Regression And Smoothing - eBooks Review

Flexible Regression And Smoothing


Flexible Regression And Smoothing
DOWNLOAD

Download Flexible Regression And Smoothing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Flexible Regression And Smoothing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Flexible Regression And Smoothing


Flexible Regression And Smoothing
DOWNLOAD
Author : Mikis D. Stasinopoulos
language : en
Publisher: CRC Press
Release Date : 2017-04-21

Flexible Regression And Smoothing written by Mikis D. Stasinopoulos and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-21 with Mathematics categories.


This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features: Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning. R code integrated into the text for ease of understanding and replication. Supplemented by a website with code, data and extra materials. This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.



Flexible Regression And Smoothing


Flexible Regression And Smoothing
DOWNLOAD
Author : Mikis D. Stasinopoulos
language : en
Publisher: CRC Press
Release Date : 2017-04-21

Flexible Regression And Smoothing written by Mikis D. Stasinopoulos and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-21 with Mathematics categories.


This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features: Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning. R code integrated into the text for ease of understanding and replication. Supplemented by a website with code, data and extra materials. This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.



Applied Smoothing Techniques For Data Analysis


Applied Smoothing Techniques For Data Analysis
DOWNLOAD
Author : Adrian W. Bowman
language : en
Publisher: OUP Oxford
Release Date : 1997-08-14

Applied Smoothing Techniques For Data Analysis written by Adrian W. Bowman and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-14 with Mathematics categories.


The book describes the use of smoothing techniques in statistics, including both density estimation and nonparametric regression. Considerable advances in research in this area have been made in recent years. The aim of this text is to describe a variety of ways in which these methods can be applied to practical problems in statistics. The role of smoothing techniques in exploring data graphically is emphasised, but the use of nonparametric curves in drawing conclusions from data, as an extension of more standard parametric models, is also a major focus of the book. Examples are drawn from a wide range of applications. The book is intended for those who seek an introduction to the area, with an emphasis on applications rather than on detailed theory. It is therefore expected that the book will benefit those attending courses at an advanced undergraduate, or postgraduate, level, as well as researchers, both from statistics and from other disciplines, who wish to learn about and apply these techniques in practical data analysis. The text makes extensive reference to S-Plus, as a computing environment in which examples can be explored. S-Plus functions and example scripts are provided to implement many of the techniques described. These parts are, however, clearly separate from the main body of text, and can therefore easily be skipped by readers not interested in S-Plus.



Effective Statistical Learning Methods For Actuaries I


Effective Statistical Learning Methods For Actuaries I
DOWNLOAD
Author : Michel Denuit
language : en
Publisher: Springer Nature
Release Date : 2019-09-03

Effective Statistical Learning Methods For Actuaries I written by Michel Denuit and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-03 with Business & Economics categories.


This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.



Functional Data Analysis In Biomechanics


Functional Data Analysis In Biomechanics
DOWNLOAD
Author : Edward Gunning
language : en
Publisher: Springer Nature
Release Date : 2024-09-23

Functional Data Analysis In Biomechanics written by Edward Gunning and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-23 with Mathematics categories.


This book provides a concise discussion of fundamental functional data analysis (FDA) techniques for analysing biomechanical data, along with an up-to-date review of their applications. The core of the book covers smoothing, registration, visualisation, functional principal components analysis and functional regression, framed in the context of the challenges posed by biomechanical data and accompanied by an extensive case study and reproducible examples using R. This book proposes future directions based on recently published methodological advancements in FDA and emerging sources of data in biomechanics. This is a vibrant research area, at the intersection of applied statistics, or more generally, data science, and biomechanics and human movement research. This book serves as both a contextual literature review of FDA applications in biomechanics and as an introduction to FDA techniques for applied researchers. In particular, it provides a valuable resource for biomechanics researchers seeking to broaden or deepen their FDA knowledge.



Statistical Learning Tools For Electricity Load Forecasting


Statistical Learning Tools For Electricity Load Forecasting
DOWNLOAD
Author : Anestis Antoniadis
language : en
Publisher: Springer Nature
Release Date : 2024-08-14

Statistical Learning Tools For Electricity Load Forecasting written by Anestis Antoniadis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-14 with Mathematics categories.


This monograph explores a set of statistical and machine learning tools that can be effectively utilized for applied data analysis in the context of electricity load forecasting. Drawing on their substantial research and experience with forecasting electricity demand in industrial settings, the authors guide readers through several modern forecasting methods and tools from both industrial and applied perspectives – generalized additive models (GAMs), probabilistic GAMs, functional time series and wavelets, random forests, aggregation of experts, and mixed effects models. A collection of case studies based on sizable high-resolution datasets, together with relevant R packages, then illustrate the implementation of these techniques. Five real datasets at three different levels of aggregation (nation-wide, region-wide, or individual) from four different countries (UK, France, Ireland, and the USA) are utilized to study five problems: short-term point-wise forecasting, selection of relevant variables for prediction, construction of prediction bands, peak demand prediction, and use of individual consumer data. This text is intended for practitioners, researchers, and post-graduate students working on electricity load forecasting; it may also be of interest to applied academics or scientists wanting to learn about cutting-edge forecasting tools for application in other areas. Readers are assumed to be familiar with standard statistical concepts such as random variables, probability density functions, and expected values, and to possess some minimal modeling experience.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2021-07-29

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-29 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.



How To Be A Quantitative Ecologist


How To Be A Quantitative Ecologist
DOWNLOAD
Author : Jason Matthiopoulos
language : en
Publisher: John Wiley & Sons
Release Date : 2011-04-25

How To Be A Quantitative Ecologist written by Jason Matthiopoulos and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-25 with Mathematics categories.


Ecological research is becoming increasingly quantitative, yet students often opt out of courses in mathematics and statistics, unwittingly limiting their ability to carry out research in the future. This textbook provides a practical introduction to quantitative ecology for students and practitioners who have realised that they need this opportunity. The text is addressed to readers who haven't used mathematics since school, who were perhaps more confused than enlightened by their undergraduate lectures in statistics and who have never used a computer for much more than word processing and data entry. From this starting point, it slowly but surely instils an understanding of mathematics, statistics and programming, sufficient for initiating research in ecology. The book’s practical value is enhanced by extensive use of biological examples and the computer language R for graphics, programming and data analysis. Key Features: Provides a complete introduction to mathematics statistics and computing for ecologists. Presents a wealth of ecological examples demonstrating the applied relevance of abstract mathematical concepts, showing how a little technique can go a long way in answering interesting ecological questions. Covers elementary topics, including the rules of algebra, logarithms, geometry, calculus, descriptive statistics, probability, hypothesis testing and linear regression. Explores more advanced topics including fractals, non-linear dynamical systems, likelihood and Bayesian estimation, generalised linear, mixed and additive models, and multivariate statistics. R boxes provide step-by-step recipes for implementing the graphical and numerical techniques outlined in each section. How to be a Quantitative Ecologist provides a comprehensive introduction to mathematics, statistics and computing and is the ideal textbook for late undergraduate and postgraduate courses in environmental biology. "With a book like this, there is no excuse for people to be afraid of maths, and to be ignorant of what it can do." —Professor Tim Benton, Faculty of Biological Sciences, University of Leeds, UK



Tidy Modeling With R


Tidy Modeling With R
DOWNLOAD
Author : Max Kuhn
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2022-07-12

Tidy Modeling With R written by Max Kuhn and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-12 with Computers categories.


Get going with tidymodels, a collection of R packages for modeling and machine learning. Whether you're just starting out or have years of experience with modeling, this practical introduction shows data analysts, business analysts, and data scientists how the tidymodels framework offers a consistent, flexible approach for your work. RStudio engineers Max Kuhn and Julia Silge demonstrate ways to create models by focusing on an R dialect called the tidyverse. Software that adopts tidyverse principles shares both a high-level design philosophy and low-level grammar and data structures, so learning one piece of the ecosystem makes it easier to learn the next. You'll understand why the tidymodels framework has been built to be used by a broad range of people. With this book, you will: Learn the steps necessary to build a model from beginning to end Understand how to use different modeling and feature engineering approaches fluently Examine the options for avoiding common pitfalls of modeling, such as overfitting Learn practical methods to prepare your data for modeling Tune models for optimal performance Use good statistical practices to compare, evaluate, and choose among models



Sepsis In Neonates And Children


Sepsis In Neonates And Children
DOWNLOAD
Author : Luregn J. Schlapbach
language : en
Publisher: Frontiers Media SA
Release Date : 2021-01-04

Sepsis In Neonates And Children written by Luregn J. Schlapbach and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Medical categories.