Flight Mechanics Modeling And Analysis


Flight Mechanics Modeling And Analysis
DOWNLOAD eBooks

Download Flight Mechanics Modeling And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Flight Mechanics Modeling And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Flight Mechanics Modeling And Analysis


Flight Mechanics Modeling And Analysis
DOWNLOAD eBooks

Author : Jitendra R. Raol
language : en
Publisher: CRC Press
Release Date : 2023-03-31

Flight Mechanics Modeling And Analysis written by Jitendra R. Raol and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-31 with Technology & Engineering categories.


Flight Mechanics Modeling and Analysis comprehensively covers flight mechanics and flight dynamics using a systems approach. This book focuses on applied mathematics and control theory in its discussion of flight mechanics to build a strong foundation for solving design and control problems in the areas of flight simulation and flight data analysis. The second edition has been expanded to include two new chapters and coverage of aeroservoelastic topics and engineering mechanics, presenting more concepts of flight control and aircraft parameter estimation. This book is intended for senior undergraduate aerospace students taking Aircraft Mechanics, Flight Dynamics & Controls, and Flight Mechanics courses. It will also be of interest to research students and R&D project-scientists of the same disciplines. Including end-of-chapter exercises and illustrative examples with a MATLAB®-based approach, this book also includes a Solutions Manual and Figure Slides for adopting instructors. Features: • Covers flight mechanics, flight simulation, flight testing, flight control, and aeroservoelasticity. • Features artificial neural network- and fuzzy logic-based aspects in modeling and analysis of flight mechanics systems: aircraft parameter estimation and reconfiguration of control. • Focuses on a systems-based approach. • Includes two new chapters, numerical simulation examples with MATLAB®-based implementations, and end-of-chapter exercises. • Includes a Solutions Manual and Figure Slides for adopting instructors.



Aircraft Dynamics


Aircraft Dynamics
DOWNLOAD eBooks

Author : Cezar Dalca
language : en
Publisher:
Release Date : 2016-02-02

Aircraft Dynamics written by Cezar Dalca and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-02 with Aerodynamics categories.


Aircraft dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of mass, known as pitch, roll and yaw. Aerospace engineers develop control systems for vehicle's orientation about its center mass. The control system contain actuators, which apply forces in several directions and generate rotational forces or moments about the aerodynamic center of the aircraft and thus rotate the aircraft in pitch, roll or yaw. Aircraft Dynamics: From Modelling to Simulation provides readers with modern tools for modelling and stimulation of aircraft dynamics. The emphasis is on detailed modelling of aerodynamic thrust forces and moments. Topics include aircraft equations of motion, modelling of aerodynamic thrust forces and moments on the aircraft and analysis of aircraft static and dynamic stability. This book with specific features for assisting, motivating and engaging aeronautical/aerospace engineering students, in the challenging task of understanding the basic principles of aircraft dynamics and the necessary skills for the modelling of the aerodynamic and thrust forces and moments. Additionally, it also provides a detailed introduction to the development of simple but very effective simulation environments for today demanding students as well as working professionals and researchers.



Aircraft Control And Simulation


Aircraft Control And Simulation
DOWNLOAD eBooks

Author : Brian L. Stevens
language : en
Publisher: John Wiley & Sons
Release Date : 2015-10-02

Aircraft Control And Simulation written by Brian L. Stevens and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-02 with Technology & Engineering categories.


Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.



Flight Dynamics Simulation And Control


Flight Dynamics Simulation And Control
DOWNLOAD eBooks

Author : Ranjan Vepa
language : en
Publisher: CRC Press
Release Date : 2014-08-18

Flight Dynamics Simulation And Control written by Ranjan Vepa and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-18 with Technology & Engineering categories.


Explore Key Concepts and Techniques Associated with Control Configured Elastic Aircraft A rapid rise in air travel in the past decade is driving the development of newer, more energy-efficient, and malleable aircraft. Typically lighter and more flexible than the traditional rigid body, this new ideal calls for adaptations to some conventional concepts. Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft addresses the intricacies involved in the dynamic modelling, simulation, and control of a selection of aircraft. This book covers the conventional dynamics of rigid aircraft, explores key concepts associated with control configured elastic aircraft, and examines the use of linear and non-linear model-based techniques and their applications to flight control. In addition, it reveals how the principles of modeling and control can be applied to both traditional rigid and modern flexible aircraft. Understand the Basic Principles Governing Aerodynamic Flows This text consists of ten chapters outlining a range of topics relevant to the understanding of flight dynamics, regulation, and control. The book material describes the basics of flight simulation and control, the basics of nonlinear aircraft dynamics, and the principles of control configured aircraft design. It explains how elasticity of the wings/fuselage can be included in the dynamics and simulation, and highlights the principles of nonlinear stability analysis of both rigid and flexible aircraft. The reader can explore the mechanics of equilibrium flight and static equilibrium, trimmed steady level flight, the analysis of the static stability of an aircraft, static margins, stick-fixed and stick-free, modeling of control surface hinge-moments, and the estimation of the elevator for trim. Introduces case studies of practical control laws for several modern aircraft Explores the evaluation of aircraft dynamic response Applies MATLAB®/Simulink® in determining the aircraft’s response to typical control inputs Explains the methods of modeling both rigid and flexible aircraft for controller design application Written with aerospace engineering faculty and students, engineers, and researchers in mind, Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft serves as a useful resource for the exploration and study of simulation of flight dynamics.



Flight Mechanics And Flight Control For A Multibody Aircraft


Flight Mechanics And Flight Control For A Multibody Aircraft
DOWNLOAD eBooks

Author : Köthe, Alexander
language : en
Publisher: Universitätsverlag der TU Berlin
Release Date : 2019-06-26

Flight Mechanics And Flight Control For A Multibody Aircraft written by Köthe, Alexander and has been published by Universitätsverlag der TU Berlin this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-26 with Science categories.


Aircraft operating as so-called High Altitude Platform Systems (HAPS) have been considered as a complementary technology to satellites since several years. These aircraft can be used for similar communication and monitoring tasks while operating at a fraction of the cost. Such concepts have been successfully tested. Those include the AeroVironment Helios and the Airbus Zephyr, with an endurance of nearly 624 hours (26 days). All these HAPS aircraft have a high-aspect-ratio wing using lightweight construction. In gusty atmosphere, this results in high bending moments and high structural loads, which can lead to overloads. Aircraft crashes, for example from Google’s Solara 50 or Facebook’s Aquila give proof of that fact. Especially in the troposphere, where the active weather takes place, gust loads occur, which can lead to the destruction of the structure. The Airbus Zephyr, the only HAPS aircraft without flight accidents, provides only a very small payload. Thus it does not fully comply with the requirements for future HAPS aircraft. To overcome the shortcomings of such single-wing aircraft, so-called multibody aircraft are considered to be an alternative. The concept assumes multiple aircraft connected to each other at their wingtips. It goes back to the German engineer Dr. Vogt. In the United States, shortly after the end of World War II, he experimented with the coupling of manned aircraft. This resulted in a high-aspect-ratio wing for the aircraft formation. The range of the formation could be increased correspondingly. The engineer Geoffrey S. Sommer took up Vogt’s idea and patented an aircraft configuration consisting of several unmanned aerial vehicles coupled at their wingtips. However, the patent does not provide any insight into the flight performance, the flight mechanical modeling or the control of such an aircraft. Single publications exist that deal with the performance of coupled aircraft. A profound, complete analysis, however, is missing so far. This is where the present work starts. For the first time, a flying vehicle based on the concept of the multibody aircraft will be analyzed in terms of flight mechanics and flight control. In a performance analysis, the aircraft concept is analyzed in detail and the benefits in terms of bending moments and flight performance are clearly highlighted. Limits for operation in flight are shown considering aerodynamic optimal points. The joints at the wingtips allow a roll and pitch motion of the individual aircraft. This results in additional degrees of freedom for the design through the implementation of different relative pitch and bank angles. For example, using individual pitch angles for individual aircraft further decreases the induced drag and increases flight performance. Because the lift is distributed symmetrically, but not homogenously along the wingspan, a lateral trim of the individual aircraft in formation flight becomes necessary. The thesis presents a new method to implement this trim by moving the battery mass along half the wingspan, which avoids additional parasite drag. Further, a complete flight dynamics model is provided and analyzed for aircraft that are mechanically connected at their wingtips. To study this model in detail, a hypothetical torsional and bending spring between the aircraft is introduced. If the spring constants are very high, the flight dynamics model has properties similar to those of an elastic aircraft. Rigid-body and formation eigenmotions can be clearly distinguished. If the spring constants are reduced towards zero, which represents the case of the multibody aircraft, classical flight mechanics eigenmotions and modes resulting from the additional degrees of freedom are coupled. This affects the eigenstructure of the aircraft. Hence, normal motions with respect to the inertial space as known from a rigid aircraft cannot be observed anymore. The plant also reveals unstable behavior. Using the non-linear flight dynamics model, flight controllers are designed to stabilize the plant and provide the aircraft with an eigenstructure similar to conventional aircraft. Different controller design methods are used. The flight controller shall further maintain a determined shape of the flight formation, it shall control flight, bank and pitch angles, and it shall suppress disturbances. Flight control theories in the time domain (Eigenstructure assignment) and in the frequency domain (H-infinity loop-shaping) are considered. The resulting inner-control loops yield a multibody aircraft behavior that is similar to the one of a rigid aircraft. For the outer-control loops, classical autopilot concepts are applied. Overall, the flight trajectory of the multibody aircraft above ground is controlled and, thus, an actual operation as HAPS is possible. In the last step, the flight controller is successfully validated in non-linear simulations with complete flight dynamics. Flugzeuge in der Form von sogenannten Höhenplattformen (engl. High-Altitude Platform Systems, HAPS) werden seit einigen Jahren als kostengünstige Ergänzung zu teuren Satelliten betrachtet. Diese Flugzeuge können für ähnliche Kommunikations- und überwachungsaufgaben eingesetzt werden. Zu den gegenwärtigen Konzepten solcher Fluggeräte, die bereits erfolgreich im Flugversuch eingesetzt wurden, zählen der Helios von AeroVironment und der Airbus Zephyr, der eine Flugdauer von fast 624 Stunden (26 Tagen) erreicht hat. Alle diese HAPS-Flugzeuge besitzen einen Flügel langer Streckung, der in Leichtbauweise konstruiert ist. Hieraus resultieren in böiger Atmosphäre hohe Biegemomente und starke strukturelle Belastungen, die zu überbelastungen führen können. Flugunfälle beispielsweise von Googles Solara 50 oder Facebooks Aquila belegen dies. Insbesondere in der Troposphäre, in der das aktive Wetter stattfindet, treten Böenlasten auf, die die Struktur zerstören können. Der Airbus Zephyr, der bisher als einziges HAPS-Flugzeug frei von Flugunfällen ist, besitzt nur eine sehr geringe Nutzlast. Daher kann er die Anforderungen an zukünftige HAPS-Flugzeuge nicht vollständig erfüllen. Um die Schwachstellen solcher Ein-Flügel-Konzepte zu überwinden, wird in dieser Arbeit ein alternatives Flugzeugkonzept betrachtet, das als Mehrkörperflugzeug bezeichnet wird. Das Konzept geht von mehreren, an den Flügelspitzen miteinander verbundenen Flugzeugen aus und beruht auf Ideen des deutschen Ingenieurs Dr. Vogt. Dieser hatte in den USA kurz nach Ende des Zweiten Weltkrieges bemannte Flugzeuge aneinanderkoppeln lassen. Hierdurch ergab sich ein Flugzeugverbund mit einem Flügel langer Streckung. Damit konnte die Reichweite des Verbundes gesteigert werden. Geoffrey S. Sommer griff die Idee von Vogt auf und lies sich eine Flugzeugkonfiguration patentieren, die aus mehreren, unbemannten Flugzeugen besteht, die an den Enden der Tragflächen miteinander gekoppelt sind. Die Patentschrift gibt jedoch keinen Einblick in die Flugleistungen, die flugmechanische Modellierung oder die Regelung eines solchen Fluggerätes. Vereinzelt existieren Veröffentlichungen, die sich mit den Flugleistungen von gekoppelten Luftfahrzeugen beschäftigen. Eine tiefgreifende, vollständige flugmechanische Analyse fehlt jedoch bisher. Hier setzt die vorliegende Arbeit an. Ein Fluggerät basierend auf dem Konzept des Mehrkörperflug-zeugs wird erstmalig hinsichtlich der Flugmechanik und Flugregelung untersucht. In einer Flugleistungsbetrachtung wird das Flugzeugkonzept genau analysiert und die Vorteile hinsichtlich der Biegemomente und der Flugleistungen klar herausgestellt. Die Grenzen des Einsatzes im Flugbetrieb werden mithilfe aerodynamischer Optimalpunkte aufgezeigt. über die Lager an den Flügelspitzen, die eine relative Roll- und Nickbewegung der Flugzeuge untereinander ermöglichen, ergeben sich durch die Einstellung unterschiedlicher Längslage- und Hängewinkel zusätzliche Freiheitsgerade im Entwurf. Die Verwendung unterschiedlicher Nicklagewinkel der einzelnen Flugzeuge reduziert beispielsweise den induzierten Widerstand weiter und steigert die Flugleistung. Durch die symmetrische, entlang der Spannweite jedoch nicht homogene Auftriebsverteilung ist auch eine laterale Trimmung der einzelnen Flugzeuge in der Formation notwendig. Hier stellt die Arbeit eine neuartige Möglichkeit vor, um diese Trimmung ohne zusätzlichen parasitären Widerstand mittels Verschiebung der Batteriemasse entlang der Halbspannweite umzusetzen. Weiterhin wird ein vollständiges flugdynamisches Modell für über mechanische Lager verbundene Luftfahrzeuge aufgestellt und analysiert. Für diese Analyse wird eine hypothetische Torsions- und Biegefeder zwischen den Flugzeugen modelliert. Sind die Federsteifigkeiten hinreichend hoch, besitzt das flugdynamische Modell Eigenschaften, die einem elastischen Flugzeug entsprechen. Starrkörper- und elastische Eigenbewegungsformen sind in diesem Fall klar separiert. Bei immer weiterer Reduzierung, bis auf eine Federsteifigkeit von Null, kommt es zu Kopplungen zwischen den klassischen, flugmechanischen Eigenbewegungsformen und den Moden aus den zusätzlichen Freiheitsgraden. Dies stellt den Auslegungsfall für das Mehrkörperflugzeug dar. Hierbei verändert sich die Eigenstruktur (engl. eigenstructure) des Flugzeugs und normale, bei einem starren Flugzeug beobachtbare Bewegungen gegenüber dem inertialen Raum sind nicht mehr erkennbar. Zusätzlich zeigt die Strecke instabiles Verhalten. Basierend auf dem nichtlinearen, flugdynamischen Modell werden mit verschiedenen Methoden Regler entworfen, die die Regelstrecke stabilisieren und dem Flugzeug eine Streckenstruktur zuweisen, die derjenigen klassischer Flugzeuge ähnelt. Zudem soll durch die Regler eine vorgegebene Form des Flugzeugverbundes beibehalten werden, die Fahrt, der Längs- und Rolllagewinkel sollen geregelt und Störungen unterdrückt werden. Als Auslegungsverfahren werden Theorien der Zustandsregelungen im Zeitbereich (Eigenstrukturvorgabe) und Frequenzbereich (H-infinity loop-shaping) verwendet. Hierdurch wird durch die inneren Regelschleifen ein Verhalten des Mehrkörperflugzeugs erzielt, das dem eines starren Flugzeugs entspricht. Für die äußeren Regelschleifen werden anschließend klassische Konzepte von Autopiloten verwendet. Im Ergebnis ist eine Regelung des Flugweges über Grund des Mehrkörperflugzeugs und somit ein tatsächlicher Betrieb als HAPS möglich. Die Funktionalität des Reglers wird abschließend in nichtlinearen Simulationen mit vollständiger Flugdynamik verifiziert.



Atmospheric And Space Flight Dynamics


Atmospheric And Space Flight Dynamics
DOWNLOAD eBooks

Author : Ashish Tewari
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-11-15

Atmospheric And Space Flight Dynamics written by Ashish Tewari and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Technology & Engineering categories.


This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.



Helicopter Flight Dynamics


Helicopter Flight Dynamics
DOWNLOAD eBooks

Author : Gareth D. Padfield
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-15

Helicopter Flight Dynamics written by Gareth D. Padfield and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-15 with Technology & Engineering categories.


The behaviour of helicopters is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first edition of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented. In this second edition, the author complements this with a new Chapter on Degraded Flying Qualities, drawing examples from flight in poor visibility, failure of control functions and encounters with severe atmospheric disturbances. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing methodologies on the other. Checking predictions in flight requires clearly defined ‘mission-task-elements’, derived from missions with realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities forms the subject of this book, which will be of interest to engineers in research laboratories and manufacturing industry, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering. The Author Gareth Padfield, a Fellow of the Royal Aeronautical Society, is the Bibby Professor of Aerospace Engineering at the University of Liverpool. He is an aeronautical engineer by training and has spent his career to date researching the theory and practice of flight for both fixed-wing aeroplanes and rotorcraft. During his years with the UK’s Royal Aircraft Establishment and Defence Evaluation and Research Agency, he conducted research into rotorcraft dynamics, handling qualities and flight control. His work has involved a mix of flight testing, creating and testing simulation models and developing analytic approximations to describe flight behaviour and handling qualities. Much of his research has been conducted in the context of international collaboration – with the Technical Co-operation Programme, AGARD and GARTEUR as well as more informal collaborations with industry, universities and research centres worldwide. He is very aware that many accomplishments, including this book, could not have been achieved without the global networking that aerospace research affords. During the last 8 years as an academic, the author has continued to develop his knowledge and understanding in flight dynamics, not only through research, but also through teaching the subject at undergraduate level; an experience that affords a new and deeper kind of learning that, hopefully, readers of this book will benefit from.



Modeling And Simulation Of Aerospace Vehicle Dynamics


Modeling And Simulation Of Aerospace Vehicle Dynamics
DOWNLOAD eBooks

Author : Peter H. Zipfel
language : en
Publisher: AIAA
Release Date : 2000

Modeling And Simulation Of Aerospace Vehicle Dynamics written by Peter H. Zipfel and has been published by AIAA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Computers categories.


A textbook for an advanced undergraduate course in which Zipfel (aerospace engineering, U. of Florida) introduces the fundamentals of an approach to, or step in, design that has become a field in and of itself. The first part assumes an introductory course in dynamics, and the second some specialized knowledge in subsystem technologies. Practicing engineers in the aerospace industry, he suggests, should be able to cover the material without a tutor. Rather than include a disk, he has made supplementary material available on the Internet. Annotation copyrighted by Book News, Inc., Portland, OR



Dasmat Delft University Aircraft Simulation Model And Analysis Tool


Dasmat Delft University Aircraft Simulation Model And Analysis Tool
DOWNLOAD eBooks

Author : C. A. A. M. van der Linden
language : en
Publisher:
Release Date : 1998

Dasmat Delft University Aircraft Simulation Model And Analysis Tool written by C. A. A. M. van der Linden and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Airplanes categories.




Intermediate Reader Of Modern Chinese


Intermediate Reader Of Modern Chinese
DOWNLOAD eBooks

Author : Robert F. Stengel
language : en
Publisher: Princeton University Press
Release Date : 2022-11-01

Intermediate Reader Of Modern Chinese written by Robert F. Stengel and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-01 with Science categories.


An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book