Floquet Theory For Partial Differential Equations

DOWNLOAD
Download Floquet Theory For Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Floquet Theory For Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Floquet Theory For Partial Differential Equations
DOWNLOAD
Author : P.A. Kuchment
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Floquet Theory For Partial Differential Equations written by P.A. Kuchment and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Social Science categories.
Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].
Floquet Theory For Partial Differential Equations
DOWNLOAD
Author : P.A. Kuchment
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-07-01
Floquet Theory For Partial Differential Equations written by P.A. Kuchment and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-07-01 with Science categories.
Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].
Partial Differential Equations And Inverse Problems
DOWNLOAD
Author : Carlos Conca
language : en
Publisher: American Mathematical Soc.
Release Date : 2004
Partial Differential Equations And Inverse Problems written by Carlos Conca and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.
This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.
Spectral And Scattering Theory
DOWNLOAD
Author : Alexander G. Ramm
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Spectral And Scattering Theory written by Alexander G. Ramm and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
Proceedings of Sessions from the First Congress of the International Society for Analysis, Applications and Computing held in Newark, Delaware, June, 2-, 1997
Almost Periodic Solutions Of Differential Equations In Banach Spaces
DOWNLOAD
Author : Yoshiyuki Hino
language : en
Publisher: CRC Press
Release Date : 2001-10-25
Almost Periodic Solutions Of Differential Equations In Banach Spaces written by Yoshiyuki Hino and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-10-25 with Mathematics categories.
This monograph presents recent developments in spectral conditions for the existence of periodic and almost periodic solutions of inhomogenous equations in Banach Spaces. Many of the results represent significant advances in this area. In particular, the authors systematically present a new approach based on the so-called evolution semigroups with an original decomposition technique. The book also extends classical techniques, such as fixed points and stability methods, to abstract functional differential equations with applications to partial functional differential equations. Almost Periodic Solutions of Differential Equations in Banach Spaces will appeal to anyone working in mathematical analysis.
Ordinary And Partial Differential Equations
DOWNLOAD
Author : B.D. Sleeman
language : en
Publisher: Springer
Release Date : 2006-11-15
Ordinary And Partial Differential Equations written by B.D. Sleeman and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-15 with Mathematics categories.
Progress In Computational Physics Picp
DOWNLOAD
Author : Matthias Ehrhardt
language : en
Publisher: Bentham Science Publishers
Release Date : 2010-11-13
Progress In Computational Physics Picp written by Matthias Ehrhardt and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-13 with Science categories.
Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computat
Commutative Harmonic Analysis Iii
DOWNLOAD
Author : V.P. Havin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Commutative Harmonic Analysis Iii written by V.P. Havin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The theory of generalized functions is a general method that makes it possible to consider and compute divergent integrals, sum divergent series, differentiate discontinuous functions, perform the operation of integration to any complex power and carry out other such operations that are impossible in classical analysis. Such operations are widely used in mathematical physics and the theory of differential equations, where the ideas of generalized func tions first arose, in other areas of analysis and beyond. The point of departure for this theory is to regard a function not as a mapping of point sets, but as a linear functional defined on smooth densi ties. This route leads to the loss of the concept of the value of function at a point, and also the possibility of multiplying functions, but it makes it pos sible to perform differentiation an unlimited number of times. The space of generalized functions of finite order is the minimal extension of the space of continuous functions in which coordinate differentiations are defined every where. In this sense the theory of generalized functions is a development of all of classical analysis, in particular harmonic analysis, and is to some extent the perfection of it. The more general theories of ultradistributions or gener alized functions of infinite order make it possible to consider infinite series of generalized derivatives of continuous functions.
Delay Equations
DOWNLOAD
Author : Odo Diekmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Delay Equations written by Odo Diekmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The aim of this book is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple, yet rich, class of examples, that is, those described by delay differential equations. It is a textbook giving detailed proofs and providing many exercises, which is intended both for self-study and for courses at a graduate level. The book would also be suitable as a reference for basic results. As the subtitle indicates, the book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. After studying this book, the reader should have a working knowledge of applied functional analysis and dynamical systems.
Introduction To Functional Differential Equations
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21
Introduction To Functional Differential Equations written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.
The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constantsformula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .