Foundations For Analytics With Python

DOWNLOAD
Download Foundations For Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations For Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Foundations For Analytics With Python
DOWNLOAD
Author : Clinton W. Brownley
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-08-16
Foundations For Analytics With Python written by Clinton W. Brownley and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with Computers categories.
If you’re like many of Excel’s 750 million users, you want to do more with your data—like repeating similar analyses over hundreds of files, or combining data in many files for analysis at one time. This practical guide shows ambitious non-programmers how to automate and scale the processing and analysis of data in different formats—by using Python. After author Clinton Brownley takes you through Python basics, you’ll be able to write simple scripts for processing data in spreadsheets as well as databases. You’ll also learn how to use several Python modules for parsing files, grouping data, and producing statistics. No programming experience is necessary. Create and run your own Python scripts by learning basic syntax Use Python’s csv module to read and parse CSV files Read multiple Excel worksheets and workbooks with the xlrd module Perform database operations in MySQL or with the mysqlclient module Create Python applications to find specific records, group data, and parse text files Build statistical graphs and plots with matplotlib, pandas, ggplot, and seaborn Produce summary statistics, and estimate regression and classification models Schedule your scripts to run automatically in both Windows and Mac environments
Foundations For Analytics With Python
DOWNLOAD
Author : Clinton W. Brownley
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-08-16
Foundations For Analytics With Python written by Clinton W. Brownley and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with Business & Economics categories.
If you’re like many of Excel’s 750 million users, you want to do more with your data—like repeating similar analyses over hundreds of files, or combining data in many files for analysis at one time. This practical guide shows ambitious non-programmers how to automate and scale the processing and analysis of data in different formats—by using Python. After author Clinton Brownley takes you through Python basics, you’ll be able to write simple scripts for processing data in spreadsheets as well as databases. You’ll also learn how to use several Python modules for parsing files, grouping data, and producing statistics. No programming experience is necessary. Create and run your own Python scripts by learning basic syntax Use Python’s csv module to read and parse CSV files Read multiple Excel worksheets and workbooks with the xlrd module Perform database operations in MySQL or with the mysqlclient module Create Python applications to find specific records, group data, and parse text files Build statistical graphs and plots with matplotlib, pandas, ggplot, and seaborn Produce summary statistics, and estimate regression and classification models Schedule your scripts to run automatically in both Windows and Mac environments
Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21
Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Foundational Python For Data Science
DOWNLOAD
Author : Kennedy Behrman
language : en
Publisher: Addison-Wesley Professional
Release Date : 2021
Foundational Python For Data Science written by Kennedy Behrman and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Data mining categories.
Data science and machine learning - two of the world's hottest fields - are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help students with widely diverse backgrounds learn foundational Python so they can use it for data science and machine learning. This book is catered to introductory-level college courses on data science. Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once students have learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving. Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more - all created with colab (jupyter compatible) notebooks, so students can execute all coding examples interactively without installing or configuring any software.
Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23
Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.
Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.
Data Analytics With Spark Using Python
DOWNLOAD
Author : Jeffrey Aven
language : en
Publisher: Addison-Wesley Professional
Release Date : 2018-06-18
Data Analytics With Spark Using Python written by Jeffrey Aven and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-18 with Computers categories.
Solve Data Analytics Problems with Spark, PySpark, and Related Open Source Tools Spark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem. Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience. Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems. Coverage includes: • Understand Spark’s evolving role in the Big Data and Hadoop ecosystems • Create Spark clusters using various deployment modes • Control and optimize the operation of Spark clusters and applications • Master Spark Core RDD API programming techniques • Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning • Efficiently integrate Spark with both SQL and nonrelational data stores • Perform stream processing and messaging with Spark Streaming and Apache Kafka • Implement predictive modeling with SparkR and Spark MLlib
Foundations Of Statistics For Data Scientists
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: CRC Press
Release Date : 2021-11-29
Foundations Of Statistics For Data Scientists written by Alan Agresti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-29 with Business & Economics categories.
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. Key Features: Shows the elements of statistical science that are important for students who plan to become data scientists. Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python). Contains nearly 500 exercises. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30
An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Hands On Data Analysis With Pandas
DOWNLOAD
Author : Stefanie Molin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-07-26
Hands On Data Analysis With Pandas written by Stefanie Molin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-26 with Computers categories.
Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery Key FeaturesPerform efficient data analysis and manipulation tasks using pandasApply pandas to different real-world domains using step-by-step demonstrationsGet accustomed to using pandas as an effective data exploration toolBook Description Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. What you will learnUnderstand how data analysts and scientists gather and analyze dataPerform data analysis and data wrangling in PythonCombine, group, and aggregate data from multiple sourcesCreate data visualizations with pandas, matplotlib, and seabornApply machine learning (ML) algorithms to identify patterns and make predictionsUse Python data science libraries to analyze real-world datasetsUse pandas to solve common data representation and analysis problemsBuild Python scripts, modules, and packages for reusable analysis codeWho this book is for This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.
Healthcare Analytics Made Simple
DOWNLOAD
Author : Vikas (Vik) Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-31
Healthcare Analytics Made Simple written by Vikas (Vik) Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Computers categories.
Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.