Foundations Of Differentiable Manifolds And Lie Groups

DOWNLOAD
Download Foundations Of Differentiable Manifolds And Lie Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Differentiable Manifolds And Lie Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Foundations Of Differentiable Manifolds And Lie Groups
DOWNLOAD
Author : Frank W. Warner
language : en
Publisher: Springer Science & Business Media
Release Date : 1983-10-10
Foundations Of Differentiable Manifolds And Lie Groups written by Frank W. Warner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983-10-10 with Mathematics categories.
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
Foundations Of Differentiable Manifolds And Lie Groups
DOWNLOAD
Author : Frank W. Warner
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Foundations Of Differentiable Manifolds And Lie Groups written by Frank W. Warner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
Foundations Of Differentiable Manifolds And Lie Groups
DOWNLOAD
Author : Frank Wilson Warner
language : en
Publisher:
Release Date : 1971
Foundations Of Differentiable Manifolds And Lie Groups written by Frank Wilson Warner and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971 with categories.
Analysis And Algebra On Differentiable Manifolds A Workbook For Students And Teachers
DOWNLOAD
Author : P.M. Gadea
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-10-31
Analysis And Algebra On Differentiable Manifolds A Workbook For Students And Teachers written by P.M. Gadea and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-10-31 with Mathematics categories.
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.
A Course In Differential Geometry And Lie Groups
DOWNLOAD
Author : S. Kumaresan
language : en
Publisher: Springer
Release Date : 2002-01-15
A Course In Differential Geometry And Lie Groups written by S. Kumaresan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-15 with Mathematics categories.
Differential Manifolds
DOWNLOAD
Author : Antoni A. Kosinski
language : en
Publisher: Courier Corporation
Release Date : 2013-07-02
Differential Manifolds written by Antoni A. Kosinski and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-02 with Mathematics categories.
Introductory text for advanced undergraduates and graduate students presents systematic study of the topological structure of smooth manifolds, starting with elements of theory and concluding with method of surgery. 1993 edition.
An Introduction To Differential Manifolds
DOWNLOAD
Author : Jacques Lafontaine
language : en
Publisher: Springer
Release Date : 2015-07-29
An Introduction To Differential Manifolds written by Jacques Lafontaine and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-29 with Mathematics categories.
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.
An Introduction To Manifolds
DOWNLOAD
Author : Loring W. Tu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-05
An Introduction To Manifolds written by Loring W. Tu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-05 with Mathematics categories.
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Differentiable Manifolds
DOWNLOAD
Author : Gerardo F. Torres del Castillo
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-09
Differentiable Manifolds written by Gerardo F. Torres del Castillo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-09 with Mathematics categories.
This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.
Smooth Manifolds
DOWNLOAD
Author : Claudio Gorodski
language : en
Publisher: Springer Nature
Release Date : 2020-08-01
Smooth Manifolds written by Claudio Gorodski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-01 with Mathematics categories.
This concise and practical textbook presents the essence of the theory on smooth manifolds. A key concept in mathematics, smooth manifolds are ubiquitous: They appear as Riemannian manifolds in differential geometry; as space-times in general relativity; as phase spaces and energy levels in mechanics; as domains of definition of ODEs in dynamical systems; as Lie groups in algebra and geometry; and in many other areas. The book first presents the language of smooth manifolds, culminating with the Frobenius theorem, before discussing the language of tensors (which includes a presentation of the exterior derivative of differential forms). It then covers Lie groups and Lie algebras, briefly addressing homogeneous manifolds. Integration on manifolds, explanations of Stokes’ theorem and de Rham cohomology, and rudiments of differential topology complete this work. It also includes exercises throughout the text to help readers grasp the theory, as well as more advanced problems for challenge-oriented minds at the end of each chapter. Conceived for a one-semester course on Differentiable Manifolds and Lie Groups, which is offered by many graduate programs worldwide, it is a valuable resource for students and lecturers alike.