[PDF] Foundations Of Linear And Generalized Linear Models - eBooks Review

Foundations Of Linear And Generalized Linear Models


Foundations Of Linear And Generalized Linear Models
DOWNLOAD

Download Foundations Of Linear And Generalized Linear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Linear And Generalized Linear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Foundations Of Linear And Generalized Linear Models


Foundations Of Linear And Generalized Linear Models
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2015-02-23

Foundations Of Linear And Generalized Linear Models written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-23 with Mathematics categories.


A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.



Foundations Of Linear And Generalized Linear Models


Foundations Of Linear And Generalized Linear Models
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-15

Foundations Of Linear And Generalized Linear Models written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-15 with Mathematics categories.


A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: IMS
Release Date : 2003

Generalized Linear Mixed Models written by Charles E. McCulloch and has been published by IMS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: Routledge
Release Date : 2019-01-22

Generalized Linear Models written by P. McCullagh and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Mathematics categories.


The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot



Generalized Linear And Mixed Models


Generalized Linear And Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20

Generalized Linear And Mixed Models written by Charles E. McCulloch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Social Science categories.


An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimation A new chapter that treats shared random effects models, latent class models, and properties of models A revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositions Expanded coverage of marginal versus conditional models Numerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers.



An Introduction To Generalized Linear Models


An Introduction To Generalized Linear Models
DOWNLOAD
Author : Annette J. Dobson
language : en
Publisher: CRC Press
Release Date : 2018-04-17

An Introduction To Generalized Linear Models written by Annette J. Dobson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Mathematics categories.


An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis Connects Bayesian analysis and MCMC methods to fit GLMs Contains numerous examples from business, medicine, engineering, and the social sciences Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods Offers the data sets and solutions to the exercises online Describes the components of good statistical practice to improve scientific validity and reproducibility of results. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.



Comprehensive Guide To Statistics


Comprehensive Guide To Statistics
DOWNLOAD
Author : Mohit Chatterjee
language : en
Publisher: Educohack Press
Release Date : 2025-02-20

Comprehensive Guide To Statistics written by Mohit Chatterjee and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-20 with Science categories.


This comprehensive textbook offers an in-depth exploration of various topics in statistics, ranging from probability theory and statistical inference to machine learning and data analysis. It balances theoretical rigor and practical applications, catering to both undergraduate and graduate students, as well as professionals in the field of statistics and related disciplines. The book begins with foundational concepts in probability theory, covering random variables, probability distributions, and expectation. It then delves into statistical inference, discussing estimation, hypothesis testing, and regression analysis. Advanced topics like Bayesian statistics, machine learning algorithms, and resampling methods are also explored. Key strengths of this textbook include clear and concise explanations, numerous examples, and exercises to reinforce learning. The accessible yet rigorous writing style makes complex concepts understandable to readers at various levels of expertise. Modern computational tools and techniques are incorporated, emphasizing practical aspects of statistical analysis in the era of big data. Readers are encouraged to apply their knowledge using software packages like R and Python, enhancing their skills in data analysis and interpretation. This comprehensive and authoritative textbook covers a wide range of topics in statistics, making it an indispensable resource for students, researchers, and practitioners alike. It provides a solid foundation in statistical theory and its real-world applications.



Encyclopedia Of Bioinformatics And Computational Biology


Encyclopedia Of Bioinformatics And Computational Biology
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2018-08-21

Encyclopedia Of Bioinformatics And Computational Biology written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-21 with Medical categories.


Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases



Reliability And Survival Analysis


Reliability And Survival Analysis
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Springer
Release Date : 2019-08-09

Reliability And Survival Analysis written by Md. Rezaul Karim and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-09 with Medical categories.


This book presents and standardizes statistical models and methods that can be directly applied to both reliability and survival analysis. These two types of analysis are widely used in many fields, including engineering, management, medicine, actuarial science, the environmental sciences, and the life sciences. Though there are a number of books on reliability analysis and a handful on survival analysis, there are virtually no books on both topics and their overlapping concepts. Offering an essential textbook, this book will benefit students, researchers, and practitioners in reliability and survival analysis, reliability engineering, biostatistics, and the biomedical sciences.



Advanced Statistics For The Behavioral Sciences


Advanced Statistics For The Behavioral Sciences
DOWNLOAD
Author : Jonathon D. Brown
language : en
Publisher: Springer
Release Date : 2019-04-30

Advanced Statistics For The Behavioral Sciences written by Jonathon D. Brown and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Social Science categories.


This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elegant computer code. Unfortunately, many researchers lack this programming background, leaving them to accept on faith the black-box output that emerges from the sophisticated statistical models they frequently use. Building on the author’s previous volume, Linear Models in Matrix Form, this text bridges the gap between computer science and research application, providing easy-to-follow computer code for many statistical analyses using the R software environment. The text opens with a foundational section on linear algebra, then covers a variety of advanced topics, including robust regression, model selection based on bias and efficiency, nonlinear models and optimization routines, generalized linear models, and survival and time-series analysis. Each section concludes with a presentation of the computer code used to illuminate the analysis, as well as pointers to packages in R that can be used for similar analyses and nonstandard cases. The accessible code and breadth of topics make this book an ideal tool for graduate students or researchers in the behavioral sciences who are interested in performing advanced statistical analyses without having a sophisticated background in computer science and mathematics.