Foundations Of Statistical Algorithms

DOWNLOAD
Download Foundations Of Statistical Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Statistical Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Foundations Of Statistical Algorithms
DOWNLOAD
Author : Claus Weihs
language : en
Publisher: CRC Press
Release Date : 2013-12-09
Foundations Of Statistical Algorithms written by Claus Weihs and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-09 with Mathematics categories.
A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of today's more powerful statistical algorithms. It emphasizes recurring themes in all statistical
Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21
Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Foundations Of Statistical Natural Language Processing
DOWNLOAD
Author : Christopher Manning
language : en
Publisher: MIT Press
Release Date : 1999-05-28
Foundations Of Statistical Natural Language Processing written by Christopher Manning and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-05-28 with Language Arts & Disciplines categories.
Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23
Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.
Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.
Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19
Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Information Theory And Statistics
DOWNLOAD
Author : Imre Csiszár
language : en
Publisher: Now Publishers Inc
Release Date : 2004
Information Theory And Statistics written by Imre Csiszár and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.
Explores the applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background.
All Of Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-17
All Of Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-17 with Computers categories.
This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics.
Elements Of Causal Inference
DOWNLOAD
Author : Jonas Peters
language : en
Publisher: MIT Press
Release Date : 2017-11-29
Elements Of Causal Inference written by Jonas Peters and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-29 with Computers categories.
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Foundations Of Statistics For Data Scientists
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: CRC Press
Release Date : 2021-11-29
Foundations Of Statistics For Data Scientists written by Alan Agresti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-29 with Business & Economics categories.
Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. Key Features: Shows the elements of statistical science that are important for students who plan to become data scientists. Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python). Contains nearly 500 exercises. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Mathematical Foundations Of Nature Inspired Algorithms
DOWNLOAD
Author : Xin-She Yang
language : en
Publisher: Springer
Release Date : 2019-05-20
Mathematical Foundations Of Nature Inspired Algorithms written by Xin-She Yang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-20 with Mathematics categories.
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.