[PDF] Foundations Of Statistics - eBooks Review

Foundations Of Statistics


Foundations Of Statistics
DOWNLOAD

Download Foundations Of Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundations Of Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Topics In The Foundation Of Statistics


Topics In The Foundation Of Statistics
DOWNLOAD
Author : B.C. van Fraassen
language : en
Publisher: Springer Science & Business Media
Release Date : 1997-02-28

Topics In The Foundation Of Statistics written by B.C. van Fraassen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-02-28 with Mathematics categories.


Foundational research focuses on the theory, but theories are to be related also to other theories, experiments, facts in their domains, data, and to their uses in applications, whether of prediction, control, or explanation. A theory is to be identified through its class of models, but not so narrowly as to disallow these roles. The language of science is to be studied separately, with special reference to the relations listed above, and to the consequent need for resources other than for theoretical description. Peculiar to the foundational level are questions of completeness (specifically in the representation of measurement), and of interpretation (a topic beset with confusions of truth and evidence, and with inappropriate metalinguistic abstraction).



The Foundations Of Statistics


The Foundations Of Statistics
DOWNLOAD
Author : Leonard J. Savage
language : en
Publisher: Courier Corporation
Release Date : 1972-06-01

The Foundations Of Statistics written by Leonard J. Savage and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1972-06-01 with Mathematics categories.


Classic analysis of the subject and the development of personal probability; one of the greatest controversies in modern statistcal thought. New preface and new footnotes to 1954 edition, with a supplementary 180-item annotated bibliography by author. Calculus, probability, statistics, and Boolean algebra are recommended.



Foundations Of Statistics


Foundations Of Statistics
DOWNLOAD
Author : D.G. Rees
language : en
Publisher: CRC Press
Release Date : 1987-09-01

Foundations Of Statistics written by D.G. Rees and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-09-01 with Mathematics categories.


This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.



Statistical Foundations Of Data Science


Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21

Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.


Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.



The Foundations Of Statistics A Simulation Based Approach


The Foundations Of Statistics A Simulation Based Approach
DOWNLOAD
Author : Shravan Vasishth
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-11

The Foundations Of Statistics A Simulation Based Approach written by Shravan Vasishth and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-11 with Mathematics categories.


Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA



Foundations Of Statistics For Data Scientists


Foundations Of Statistics For Data Scientists
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: CRC Press
Release Date : 2021-11-29

Foundations Of Statistics For Data Scientists written by Alan Agresti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-29 with Business & Economics categories.


Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. Key Features: Shows the elements of statistical science that are important for students who plan to become data scientists. Includes Bayesian and regularized fitting of models (e.g., showing an example using the lasso), classification and clustering, and implementing methods with modern software (R and Python). Contains nearly 500 exercises. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website (http://stat4ds.rwth-aachen.de/) has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.



Foundations Of Statistical Algorithms


Foundations Of Statistical Algorithms
DOWNLOAD
Author : Claus Weihs
language : en
Publisher: CRC Press
Release Date : 2013-12-09

Foundations Of Statistical Algorithms written by Claus Weihs and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-09 with Mathematics categories.


A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of today's more powerful statistical algorithms. It emphasizes recurring themes in all statistical



Foundations Of Applied Statistical Methods


Foundations Of Applied Statistical Methods
DOWNLOAD
Author : Hang Lee
language : en
Publisher: Springer Nature
Release Date : 2023-11-22

Foundations Of Applied Statistical Methods written by Hang Lee and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-22 with Medical categories.


This book covers methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a guidebook for applied researchers or as an introductory statistical methods textbook for students, not majoring in statistics. Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination.



Foundations Of Data Science


Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23

Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.


Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.



Probabilistic Foundations Of Statistical Network Analysis


Probabilistic Foundations Of Statistical Network Analysis
DOWNLOAD
Author : Harry Crane
language : en
Publisher: CRC Press
Release Date : 2018-04-17

Probabilistic Foundations Of Statistical Network Analysis written by Harry Crane and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Business & Economics categories.


Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.