Fractal Geometry Complex Dimensions And Zeta Functions

DOWNLOAD
Download Fractal Geometry Complex Dimensions And Zeta Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fractal Geometry Complex Dimensions And Zeta Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fractal Geometry Complex Dimensions And Zeta Functions
DOWNLOAD
Author : Michel L. Lapidus
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-08
Fractal Geometry Complex Dimensions And Zeta Functions written by Michel L. Lapidus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-08 with Mathematics categories.
Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.
Fractal Geometry Complex Dimensions And Zeta Functions
DOWNLOAD
Author : Michel Lapidus
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-20
Fractal Geometry Complex Dimensions And Zeta Functions written by Michel Lapidus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-20 with Mathematics categories.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Fractal Geometry Complex Dimensions And Zeta Functions
DOWNLOAD
Author : Springer
language : en
Publisher:
Release Date : 2012-09-01
Fractal Geometry Complex Dimensions And Zeta Functions written by Springer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-01 with categories.
Fractal Geometry And Number Theory
DOWNLOAD
Author : Michel L. Lapidus
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Fractal Geometry And Number Theory written by Michel L. Lapidus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
Horizons Of Fractal Geometry And Complex Dimensions
DOWNLOAD
Author : Robert G. Niemeyer
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-06-26
Horizons Of Fractal Geometry And Complex Dimensions written by Robert G. Niemeyer and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-26 with Mathematics categories.
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Fractal Zeta Functions And Fractal Drums
DOWNLOAD
Author : Michel L. Lapidus
language : en
Publisher: Springer
Release Date : 2017-06-07
Fractal Zeta Functions And Fractal Drums written by Michel L. Lapidus and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-07 with Mathematics categories.
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.
Fractal Geometry And Stochastics V
DOWNLOAD
Author : Christoph Bandt
language : en
Publisher: Birkhäuser
Release Date : 2015-07-08
Fractal Geometry And Stochastics V written by Christoph Bandt and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-08 with Mathematics categories.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
Fractal Geometry And Dynamical Systems In Pure And Applied Mathematics Fractals In Pure Mathematics
DOWNLOAD
Author : David Carfi
language : en
Publisher: American Mathematical Soc.
Release Date : 2013-10-22
Fractal Geometry And Dynamical Systems In Pure And Applied Mathematics Fractals In Pure Mathematics written by David Carfi and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-22 with Mathematics categories.
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
In Search Of The Riemann Zeros
DOWNLOAD
Author : Michel Laurent Lapidus
language : en
Publisher: American Mathematical Soc.
Release Date : 2008
In Search Of The Riemann Zeros written by Michel Laurent Lapidus and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.
Analytic Number Theory
DOWNLOAD
Author : Carl Pomerance
language : en
Publisher: Springer
Release Date : 2015-11-18
Analytic Number Theory written by Carl Pomerance and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-18 with Mathematics categories.
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Régis de la Bretèche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivić, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, János Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwiłł, Joël Rivat, András Sárközy, Jeffrey Shallit, Terence Tao, Gérald Tenenbaum, László Tóth, Tamar Ziegler, Liyang Zhang.