From Data And Information Analysis To Knowledge Engineering

DOWNLOAD
Download From Data And Information Analysis To Knowledge Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Data And Information Analysis To Knowledge Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Knowledge Engineering
DOWNLOAD
Author : Simon Kendal
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-10-04
An Introduction To Knowledge Engineering written by Simon Kendal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-04 with Computers categories.
An Introduction to Knowledge Engineering presents a simple but detailed exp- ration of current and established work in the ?eld of knowledge-based systems and related technologies. Its treatment of the increasing variety of such systems is designed to provide the reader with a substantial grounding in such techno- gies as expert systems, neural networks, genetic algorithms, case-based reasoning systems, data mining, intelligent agents and the associated techniques and meth- ologies. The material is reinforced by the inclusion of numerous activities that provide opportunities for the reader to engage in their own research and re?ection as they progress through the book. In addition, self-assessment questions allow the student to check their own understanding of the concepts covered. The book will be suitable for both undergraduate and postgraduate students in computing science and related disciplines such as knowledge engineering, arti?cial intelligence, intelligent systems, cognitive neuroscience, robotics and cybernetics. vii Contents Foreword vii 1 An Introduction to Knowledge Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section 1: Data, Information and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Section 2: Skills of a Knowledge Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Section 3: An Introduction to Knowledge-Based Systems. . . . . . . . . . . . . . . . . 18 2 Types of Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Section 1: Expert Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Section 2: Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Section 3: Case-Based Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 4: Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Section 5: Intelligent Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Section 6: Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Knowledge Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Knowledge Representation and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 1: Using Knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Section 2: Logic, Rules and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Section 3: Developing Rule-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Section 4: Semantic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Knowledge Engineering And Management
DOWNLOAD
Author : Guus Schreiber
language : en
Publisher: MIT Press
Release Date : 2000
Knowledge Engineering And Management written by Guus Schreiber and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Business & Economics categories.
Prologue: The Value of Knowledge -- 2. Knowledge-Engineering Basics -- 3. The Task and Its Organizational Context -- 4. Knowledge Management -- 5. Knowledge Model Components -- 6. Template Knowledge Models -- 7. Knowledge Model Construction -- 8. Knowledge-Elicitation Techniques -- 9. Modelling Communication Aspects -- 10. Case Study: The Housing Application -- 11. Designing Knowledge Systems -- 12. Knowledge-System Implementation -- 13. Advanced Knowledge Modelling -- 14. UML Notations Used in Common KADS -- 15. Project Management.
Knowledge Engineering For Modern Information Systems
DOWNLOAD
Author : Anand Sharma
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2022-01-19
Knowledge Engineering For Modern Information Systems written by Anand Sharma and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-19 with Computers categories.
Knowledge Engineering (KE) is a field within artificial intelligence that develops knowledgebased systems. KE is the process of imitating how a human expert in a specific domain would act and take decisions. It contains large amounts of knowledge, like metadata and information about a data object that describes characteristics such as content, quality, and format, structure and processes. Such systems are computer programs that are the basis of how a decision is made or a conclusion is reached. It is having all the rules and reasoning mechanisms to provide solutions to real-world problems. This book presents an extensive collection of the recent findings and innovative research in the information system and KE domain. Highlighting the challenges and difficulties in implementing these approaches, this book is a critical reference source for academicians, professionals, engineers, technology designers, analysts, undergraduate and postgraduate students in computing science and related disciplines such as Information systems, Knowledge Engineering, Intelligent Systems, Artifi cial Intelligence, Cognitive Neuro - science, and Robotics. In addition, anyone who is interested or involved in sophisticated information systems and knowledge engineering developments will find this book a valuable source of ideas and guidance.
Prediction And Analysis For Knowledge Representation And Machine Learning
DOWNLOAD
Author : Avadhesh Kumar
language : en
Publisher: CRC Press
Release Date : 2022-01-31
Prediction And Analysis For Knowledge Representation And Machine Learning written by Avadhesh Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-31 with Computers categories.
A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which includes both basic and advanced concepts.
Multidisciplinary Studies In Knowledge And Systems Science
DOWNLOAD
Author : Yang, Guangfei
language : en
Publisher: IGI Global
Release Date : 2013-05-31
Multidisciplinary Studies In Knowledge And Systems Science written by Yang, Guangfei and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-31 with Business & Economics categories.
"This book brings together valuable research on the adoption of a systems approach to the theory and practice of managing information and people in knowledge intensive activities and processes"--Provided by publisher.
From Data And Information Analysis To Knowledge Engineering
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2005
From Data And Information Analysis To Knowledge Engineering written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.
Data Science And Classification
DOWNLOAD
Author : Vladimir Batagelj
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-05
Data Science And Classification written by Vladimir Batagelj and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-05 with Language Arts & Disciplines categories.
Data Science and Classification provides new methodological developments in data analysis and classification. The broad and comprehensive coverage includes the measurement of similarity and dissimilarity, methods for classification and clustering, network and graph analyses, analysis of symbolic data, and web mining. Beyond structural and theoretical results, the book offers application advice for a variety of problems, in medicine, microarray analysis, social network structures, and music.
Handbook On Ontologies
DOWNLOAD
Author : Steffen Staab
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-03-14
Handbook On Ontologies written by Steffen Staab and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-14 with Computers categories.
An ontology is a formal description of concepts and relationships that can exist for a community of human and/or machine agents. The notion of ontologies is crucial for the purpose of enabling knowledge sharing and reuse. The Handbook on Ontologies provides a comprehensive overview of the current status and future prospectives of the field of ontologies considering ontology languages, ontology engineering methods, example ontologies, infrastructures and technologies for ontologies, and how to bring this all into ontology-based infrastructures and applications that are among the best of their kind. The field of ontologies has tremendously developed and grown in the five years since the first edition of the "Handbook on Ontologies". Therefore, its revision includes 21 completely new chapters as well as a major re-working of 15 chapters transferred to this second edition.
Machine Learning And Principles And Practice Of Knowledge Discovery In Databases
DOWNLOAD
Author : Rosa Meo
language : en
Publisher: Springer Nature
Release Date : 2024-12-31
Machine Learning And Principles And Practice Of Knowledge Discovery In Databases written by Rosa Meo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-31 with Computers categories.
The five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
An Introduction To Data Science With Python
DOWNLOAD
Author : Jeffrey S. Saltz
language : en
Publisher: SAGE Publications
Release Date : 2024-05-29
An Introduction To Data Science With Python written by Jeffrey S. Saltz and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-29 with Computers categories.
An Introduction to Data Science with Python by Jeffrey S. Saltz and Jeffery M. Stanton provides readers who are new to Python and data science with a step-by-step walkthrough of the tools and techniques used to analyze data and generate predictive models. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using Python-based Jupyter Notebooks. The techniques include making tables and data frames, computing statistics, managing data, creating data visualizations, and building machine learning models. Each chapter breaks down the process into simple steps and components so students with no more than a high school algebra background will still find the concepts and code intelligible. Explanations are reinforced with linked practice questions throughout to check reader understanding. The book also covers advanced topics such as neural networks and deep learning, the basis of many recent and startling advances in machine learning and artificial intelligence. With their trademark humor and clear explanations, Saltz and Stanton provide a gentle introduction to this powerful data science tool. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don′t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site.