[PDF] From Finite To Infinite Dimensional Dynamical Systems - eBooks Review

From Finite To Infinite Dimensional Dynamical Systems


From Finite To Infinite Dimensional Dynamical Systems
DOWNLOAD

Download From Finite To Infinite Dimensional Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Finite To Infinite Dimensional Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



From Finite To Infinite Dimensional Dynamical Systems


From Finite To Infinite Dimensional Dynamical Systems
DOWNLOAD
Author : James Robinson
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-05-31

From Finite To Infinite Dimensional Dynamical Systems written by James Robinson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-05-31 with Mathematics categories.


This volume contains six papers originally presented at a NATO Advanced Study Institute held in Cambridge, U.K. in 1995 on the fundamental properties of partial differential equations and modeling processes involving spatial dynamics. The contributors, from academic institutions in Europe and the U.S., discuss such topics as lattice dynamical systems, low-dimensional models of turbulence, and nonlinear dynamics of extended systems. The volume is not indexed. c. Book News Inc.



Infinite Dimensional Dynamical Systems In Mechanics And Physics


Infinite Dimensional Dynamical Systems In Mechanics And Physics
DOWNLOAD
Author : Roger Temam
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-11

Infinite Dimensional Dynamical Systems In Mechanics And Physics written by Roger Temam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-11 with Mathematics categories.


In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.



Stability Of Dynamical Systems


Stability Of Dynamical Systems
DOWNLOAD
Author :
language : en
Publisher: Springer Science & Business Media
Release Date : 2008

Stability Of Dynamical Systems written by and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Differentiable dynamical systems categories.


In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.



Dynamics In Infinite Dimensions


Dynamics In Infinite Dimensions
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18

Dynamics In Infinite Dimensions written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.


State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications



An Introduction To Infinite Dimensional Analysis


An Introduction To Infinite Dimensional Analysis
DOWNLOAD
Author : Giuseppe Da Prato
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-08-25

An Introduction To Infinite Dimensional Analysis written by Giuseppe Da Prato and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-25 with Mathematics categories.


Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.



The Connection Between Infinite Dimensional And Finite Dimensional Dynamical Systems


The Connection Between Infinite Dimensional And Finite Dimensional Dynamical Systems
DOWNLOAD
Author : Basil Nicolaenko
language : en
Publisher: American Mathematical Soc.
Release Date : 1989

The Connection Between Infinite Dimensional And Finite Dimensional Dynamical Systems written by Basil Nicolaenko and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Mathematics categories.


The last few years have seen a number of major developments demonstrating that the long-term behavior of solutions of a very large class of partial differential equations possesses a striking resemblance to the behavior of solutions of finite dimensional dynamical systems, or ordinary differential equations. The first of these advances was the discovery that a dissipative PDE has a compact, global attractor with finite Hausdorff and fractal dimensions. More recently, it was shown that some of these PDEs possess a finite dimensional inertial manifold-that is, an invariant manifold containing the attractor and exponentially attractive trajectories. With the improved understanding of the exact connection between finite dimensional dynamical systems and various classes of dissipative PDEs, it is now realistic to hope that the wealth of studies of such topics as bifurcations of finite vector fields and ``strange'' fractal attractors can be brought to bear on various mathematical models, including continuum flows. Surprisingly, a number of distributed systems from continuum mechanics have been found to exhibit the same nontrivial dynamic behavior as observed in low-dimensional dynamical systems. As a natural consequence of these observations, a new direction of research has arisen: detection and analysis of finite dimensional dynamical characteristics of infinite-dimensional systems. This book represents the proceedings of an AMS-IMS-SIAM Summer Research Conference, held in July, 1987 at the University of Colorado at Boulder. Bringing together mathematicians and physicists, the conference provided a forum for presentations on the latest developments in the field and fostered lively interactions on open questions and future directions. With contributions from some of the top experts, these proceedings will provide readers with an overview of this vital area of research.



Infinite Dimensional Dynamical Systems


Infinite Dimensional Dynamical Systems
DOWNLOAD
Author : James C. Robinson
language : en
Publisher: Cambridge University Press
Release Date : 2001-04-23

Infinite Dimensional Dynamical Systems written by James C. Robinson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-04-23 with Mathematics categories.


This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.



Linear Port Hamiltonian Systems On Infinite Dimensional Spaces


Linear Port Hamiltonian Systems On Infinite Dimensional Spaces
DOWNLOAD
Author : Birgit Jacob
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-06-13

Linear Port Hamiltonian Systems On Infinite Dimensional Spaces written by Birgit Jacob and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-13 with Science categories.


This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.



Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis


Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis
DOWNLOAD
Author : Denis Blackmore
language : en
Publisher: World Scientific
Release Date : 2011-03-04

Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis written by Denis Blackmore and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-04 with Mathematics categories.


This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.



Dynamical Systems And Population Persistence


Dynamical Systems And Population Persistence
DOWNLOAD
Author : Hal L. Smith
language : en
Publisher: American Mathematical Soc.
Release Date : 2011

Dynamical Systems And Population Persistence written by Hal L. Smith and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.


Providing a self-contained treatment of persistence theory that is accessible to graduate students, this monograph includes chapters on infinite-dimensional examples including an SI epidemic model with variable infectivity, microbial growth in a tubular bioreactor, and an age-structured model of cells growing in a chemostat.