Function Spaces And Potential Theory

DOWNLOAD
Download Function Spaces And Potential Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Function Spaces And Potential Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Function Spaces And Potential Theory
DOWNLOAD
Author : David R. Adams
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Function Spaces And Potential Theory written by David R. Adams and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Function spaces, especially those spaces that have become known as Sobolev spaces, and their natural extensions, are now a central concept in analysis. In particular, they play a decisive role in the modem theory of partial differential equations (PDE). Potential theory, which grew out of the theory of the electrostatic or gravita tional potential, the Laplace equation, the Dirichlet problem, etc. , had a fundamen tal role in the development of functional analysis and the theory of Hilbert space. Later, potential theory was strongly influenced by functional analysis. More re cently, ideas from potential theory have enriched the theory of those more general function spaces that appear naturally in the study of nonlinear partial differential equations. This book is motivated by the latter development. The connection between potential theory and the theory of Hilbert spaces can be traced back to C. F. Gauss [181], who proved (with modem rigor supplied almost a century later by O. Frostman [158]) the existence of equilibrium potentials by minimizing a quadratic integral, the energy. This theme is pervasive in the work of such mathematicians as D. Hilbert, Ch. -J. de La Vallee Poussin, M. Riesz, O. Frostman, A. Beurling, and the connection was made particularly clear in the work of H. Cartan [97] in the 1940's. In the thesis of J. Deny [119], and in the subsequent work of J. Deny and J. L.
Potential Theory On Harmonic Spaces
DOWNLOAD
Author : Corneliu Constantinescu
language : en
Publisher: Springer
Release Date : 1972-12-05
Potential Theory On Harmonic Spaces written by Corneliu Constantinescu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1972-12-05 with Mathematics categories.
There has been a considerable revival of interest in potential theory during the last 20 years. This is made evident by the appearance of new mathematical disciplines in that period which now-a-days are considered as parts of potential theory. Examples of such disciplines are: the theory of Choquet capacities, of Dirichlet spaces, of martingales and Markov processes, of integral representation in convex compact sets as well as the theory of harmonic spaces. All these theories have roots in classical potential theory. The theory of harmonic spaces, sometimes also called axiomatic theory of harmonic functions, plays a particular role among the above mentioned theories. On the one hand, this theory has particularly close connections with classical potential theory. Its main notion is that of a harmonic function and its main aim is the generalization and unification of classical results and methods for application to an extended class of elliptic and parabolic second order partial differential equations. On the other hand, the theory of harmonic spaces is closely related to the theory of Markov processes. In fact, all important notions and results of the theory have a probabilistic interpretation.
Integral Representation Theory
DOWNLOAD
Author : Jaroslav Lukeš
language : en
Publisher: Walter de Gruyter
Release Date : 2010
Integral Representation Theory written by Jaroslav Lukeš and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
This monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications
Nonlinear Potential Theory And Weighted Sobolev Spaces
DOWNLOAD
Author : Bengt O. Turesson
language : en
Publisher: Springer
Release Date : 2007-05-06
Nonlinear Potential Theory And Weighted Sobolev Spaces written by Bengt O. Turesson and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-06 with Mathematics categories.
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.
Complex Potential Theory
DOWNLOAD
Author : Paul M. Gauthier
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Complex Potential Theory written by Paul M. Gauthier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Proceedings of the NATO Advanced Study Institute and Séminaire de mathématiques supérieures, Montréal, Canada, July 26--August 6, 1993
Functional Analysis Sobolev Spaces And Partial Differential Equations
DOWNLOAD
Author : Haim Brezis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-10
Functional Analysis Sobolev Spaces And Partial Differential Equations written by Haim Brezis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-10 with Mathematics categories.
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Potential Theory On Locally Compact Abelian Groups
DOWNLOAD
Author : C. van den Berg
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Potential Theory On Locally Compact Abelian Groups written by C. van den Berg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.
Weakly Differentiable Functions
DOWNLOAD
Author : William P. Ziemer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Weakly Differentiable Functions written by William P. Ziemer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The term "weakly differentiable functions" in the title refers to those inte n grable functions defined on an open subset of R whose partial derivatives in the sense of distributions are either LP functions or (signed) measures with finite total variation. The former class of functions comprises what is now known as Sobolev spaces, though its origin, traceable to the early 1900s, predates the contributions by Sobolev. Both classes of functions, Sobolev spaces and the space of functions of bounded variation (BV func tions), have undergone considerable development during the past 20 years. From this development a rather complete theory has emerged and thus has provided the main impetus for the writing of this book. Since these classes of functions play a significant role in many fields, such as approximation theory, calculus of variations, partial differential equations, and non-linear potential theory, it is hoped that this monograph will be of assistance to a wide range of graduate students and researchers in these and perhaps other related areas. Some of the material in Chapters 1-4 has been presented in a graduate course at Indiana University during the 1987-88 academic year, and I am indebted to the students and colleagues in attendance for their helpful comments and suggestions.
An Introductory Course In Lebesgue Spaces
DOWNLOAD
Author : Rene Erlin Castillo
language : en
Publisher: Springer
Release Date : 2016-06-23
An Introductory Course In Lebesgue Spaces written by Rene Erlin Castillo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-23 with Mathematics categories.
This book is devoted exclusively to Lebesgue spaces and their direct derived spaces. Unique in its sole dedication, this book explores Lebesgue spaces, distribution functions and nonincreasing rearrangement. Moreover, it also deals with weak, Lorentz and the more recent variable exponent and grand Lebesgue spaces with considerable detail to the proofs. The book also touches on basic harmonic analysis in the aforementioned spaces. An appendix is given at the end of the book giving it a self-contained character. This work is ideal for teachers, graduate students and researchers.
Integral Operators In Non Standard Function Spaces
DOWNLOAD
Author : Vakhtang Kokilashvili
language : en
Publisher: Birkhäuser
Release Date : 2016-05-11
Integral Operators In Non Standard Function Spaces written by Vakhtang Kokilashvili and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-11 with Mathematics categories.
This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.