[PDF] Functional Fractional Calculus - eBooks Review

Functional Fractional Calculus


Functional Fractional Calculus
DOWNLOAD

Download Functional Fractional Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Fractional Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Functional Fractional Calculus


Functional Fractional Calculus
DOWNLOAD
Author : Shantanu Das
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-01

Functional Fractional Calculus written by Shantanu Das and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-01 with Technology & Engineering categories.


When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematical and geometrical explanations, but also several practical applications are given particularly for system identification, description and then efficient controls. The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions. Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.” This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.



Fractional Calculus Theory And Applications


Fractional Calculus Theory And Applications
DOWNLOAD
Author : Francesco Mainardi (Ed.)
language : en
Publisher:
Release Date :

Fractional Calculus Theory And Applications written by Francesco Mainardi (Ed.) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Functional Fractional Calculus For System Identification And Controls


Functional Fractional Calculus For System Identification And Controls
DOWNLOAD
Author : Shantanu Das
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-09-26

Functional Fractional Calculus For System Identification And Controls written by Shantanu Das and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-26 with Technology & Engineering categories.


In this book, not only are mathematical abstractions discussed in a lucid manner, but also several practical applications are given particularly for system identification, description and then efficient controls. The reader gets a feeling of the wide applicability of fractional calculus in the field of science and engineering. With this book, a starter can understand the concepts of this emerging field with a minimal effort and basic mathematics.



Fractional Calculus And Fractional Differential Equations


Fractional Calculus And Fractional Differential Equations
DOWNLOAD
Author : Varsha Daftardar-Gejji
language : en
Publisher: Springer
Release Date : 2019-08-10

Fractional Calculus And Fractional Differential Equations written by Varsha Daftardar-Gejji and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-10 with Mathematics categories.


This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.



Implicit Fractional Differential And Integral Equations


Implicit Fractional Differential And Integral Equations
DOWNLOAD
Author : Saïd Abbas
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-02-05

Implicit Fractional Differential And Integral Equations written by Saïd Abbas and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-05 with Mathematics categories.


This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations



Special Functions For Applied Scientists


Special Functions For Applied Scientists
DOWNLOAD
Author : A.M. Mathai
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-02-13

Special Functions For Applied Scientists written by A.M. Mathai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-13 with Science categories.


Chapter 1 introduces elementary classical special functions. Gamma, beta, psi, zeta functions, hypergeometric functions and the associated special functions, generalizations to Meijer's G and Fox's H-functions are examined here. Discussion is confined to basic properties and selected applications. Introduction to statistical distribution theory is provided. Some recent extensions of Dirichlet integrals and Dirichlet densities are discussed. A glimpse into multivariable special functions such as Appell's functions and Lauricella functions is part of Chapter 1. Special functions as solutions of differential equations are examined. Chapter 2 is devoted to fractional calculus. Fractional integrals and fractional derivatives are discussed. Their applications to reaction-diffusion problems in physics, input-output analysis, and Mittag-Leffler stochastic processes are developed. Chapter 3 deals with q-hyper-geometric or basic hypergeometric functions. Chapter 4 covers basic hypergeometric functions and Ramanujan's work on elliptic and theta functions. Chapter 5 examines the topic of special functions and Lie groups. Chapters 6 to 9 are devoted to applications of special functions. Applications to stochastic processes, geometric infinite divisibility of random variables, Mittag-Leffler processes, alpha-Laplace processes, density estimation, order statistics and astrophysics problems, are dealt with in Chapters 6 to 9. Chapter 10 is devoted to wavelet analysis. An introduction to wavelet analysis is given. Chapter 11 deals with the Jacobians of matrix transformations. Various types of matrix transformations and the associated Jacobians are provided. Chapter 12 is devoted to the discussion of functions of matrix argument in the real case. Functions of matrix argument and the pathway models along with their applications are discussed.



Advances In Fractional Calculus


Advances In Fractional Calculus
DOWNLOAD
Author : J. Sabatier
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-28

Advances In Fractional Calculus written by J. Sabatier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-28 with Technology & Engineering categories.


In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.



General Fractional Derivatives


General Fractional Derivatives
DOWNLOAD
Author : Xiao-Jun Yang
language : en
Publisher: CRC Press
Release Date : 2019-05-10

General Fractional Derivatives written by Xiao-Jun Yang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-10 with Mathematics categories.


General Fractional Derivatives: Theory, Methods and Applications provides knowledge of the special functions with respect to another function, and the integro-differential operators where the integrals are of the convolution type and exist the singular, weakly singular and nonsingular kernels, which exhibit the fractional derivatives, fractional integrals, general fractional derivatives, and general fractional integrals of the constant and variable order without and with respect to another function due to the appearance of the power-law and complex herbivores to figure out the modern developments in theoretical and applied science. Features: Give some new results for fractional calculus of constant and variable orders. Discuss some new definitions for fractional calculus with respect to another function. Provide definitions for general fractional calculus of constant and variable orders. Report new results of general fractional calculus with respect to another function. Propose news special functions with respect to another function and their applications. Present new models for the anomalous relaxation and rheological behaviors. This book serves as a reference book and textbook for scientists and engineers in the fields of mathematics, physics, chemistry and engineering, senior undergraduate and graduate students. Dr. Xiao-Jun Yang is a full professor of Applied Mathematics and Mechanics, at China University of Mining and Technology, China. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Modelling and Analysis, International Journal of Numerical Methods for Heat & Fluid Flow, and Thermal Science.



Applications Of Fractional Calculus In Physics


Applications Of Fractional Calculus In Physics
DOWNLOAD
Author : Rudolf Hilfer
language : en
Publisher: World Scientific
Release Date : 2000-03-02

Applications Of Fractional Calculus In Physics written by Rudolf Hilfer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-02 with Science categories.


Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.



Fractional Differential Equations


Fractional Differential Equations
DOWNLOAD
Author : Igor Podlubny
language : en
Publisher: Elsevier
Release Date : 1998-10-27

Fractional Differential Equations written by Igor Podlubny and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-10-27 with Mathematics categories.


This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives