[PDF] Fundamentals Of Machine Learning For Predictive Data Analytics - eBooks Review

Fundamentals Of Machine Learning For Predictive Data Analytics


Fundamentals Of Machine Learning For Predictive Data Analytics
DOWNLOAD

Download Fundamentals Of Machine Learning For Predictive Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Machine Learning For Predictive Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition


Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2020-10-20

Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-20 with Computers categories.


The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.



Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition


Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2020-10-20

Fundamentals Of Machine Learning For Predictive Data Analytics Second Edition written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-20 with Computers categories.


The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. The book is accessible, offering nontechnical explanations of the ideas underpinning each approach before introducing mathematical models and algorithms. It is focused and deep, providing students with detailed knowledge on core concepts, giving them a solid basis for exploring the field on their own. Both early chapters and later case studies illustrate how the process of learning predictive models fits into the broader business context. The two case studies describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book can be used as a textbook at the introductory level or as a reference for professionals.



Internet Of Things And Data Analytics Handbook


Internet Of Things And Data Analytics Handbook
DOWNLOAD
Author : Hwaiyu Geng
language : en
Publisher: John Wiley & Sons
Release Date : 2017-01-10

Internet Of Things And Data Analytics Handbook written by Hwaiyu Geng and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-10 with Technology & Engineering categories.


This book examines the Internet of Things (IoT) and Data Analytics from a technical, application, and business point of view. Internet of Things and Data Analytics Handbook describes essential technical knowledge, building blocks, processes, design principles, implementation, and marketing for IoT projects. It provides readers with knowledge in planning, designing, and implementing IoT projects. The book is written by experts on the subject matter, including international experts from nine countries in the consumer and enterprise fields of IoT. The text starts with an overview and anatomy of IoT, ecosystem of IoT, communication protocols, networking, and available hardware, both present and future applications and transformations, and business models. The text also addresses big data analytics, machine learning, cloud computing, and consideration of sustainability that are essential to be both socially responsible and successful. Design and implementation processes are illustrated with best practices and case studies in action. In addition, the book: Examines cloud computing, data analytics, and sustainability and how they relate to IoT overs the scope of consumer, government, and enterprise applications Includes best practices, business model, and real-world case studies Hwaiyu Geng, P.E., is a consultant with Amica Research (www.AmicaResearch.org, Palo Alto, California), promoting green planning, design, and construction projects. He has had over 40 years of manufacturing and management experience, working with Westinghouse, Applied Materials, Hewlett Packard, and Intel on multi-million high-tech projects. He has written and presented numerous technical papers at international conferences. Mr. Geng, a patent holder, is also the editor/author of Data Center Handbook (Wiley, 2015).



Microsoft Azure Essentials Azure Machine Learning


Microsoft Azure Essentials Azure Machine Learning
DOWNLOAD
Author : Jeff Barnes
language : en
Publisher: Microsoft Press
Release Date : 2015-04-25

Microsoft Azure Essentials Azure Machine Learning written by Jeff Barnes and has been published by Microsoft Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-25 with Computers categories.


Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.



Fundamentals And Methods Of Machine And Deep Learning


Fundamentals And Methods Of Machine And Deep Learning
DOWNLOAD
Author : Pradeep Singh
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-02

Fundamentals And Methods Of Machine And Deep Learning written by Pradeep Singh and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-02 with Computers categories.


FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.



Predictive Analytics Using Statistics And Big Data Concepts And Modeling


Predictive Analytics Using Statistics And Big Data Concepts And Modeling
DOWNLOAD
Author : Krishna Kumar Mohbey
language : en
Publisher: Bentham Science Publishers
Release Date : 2020-12-09

Predictive Analytics Using Statistics And Big Data Concepts And Modeling written by Krishna Kumar Mohbey and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-09 with Computers categories.


This book presents a selection of the latest and representative developments in predictive analytics using big data technologies. It focuses on some critical aspects of big data and machine learning and provides studies for readers. The chapters address a comprehensive range of advanced data technologies used for statistical modeling towards predictive analytics. Topics included in this book include: - Categorized machine learning algorithms - Player monopoly in cricket teams. - Chain type estimators - Log type estimators - Bivariate survival data using shared inverse Gaussian frailty models - Weblog analysis - COVID-19 epidemiology This reference book will be of significant benefit to the predictive analytics community as a useful guide of the latest research in this emerging field.



Choosing Chinese Universities


Choosing Chinese Universities
DOWNLOAD
Author : Alice Y.C. Te
language : en
Publisher: Routledge
Release Date : 2022-10-07

Choosing Chinese Universities written by Alice Y.C. Te and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-07 with Education categories.


This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.



Fundamentals Of Machine Learning For Predictive Data Analytics


Fundamentals Of Machine Learning For Predictive Data Analytics
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher:
Release Date : 2020

Fundamentals Of Machine Learning For Predictive Data Analytics written by John D. Kelleher and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with COMPUTERS categories.


The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.



Machine Learning With R Third Edition


Machine Learning With R Third Edition
DOWNLOAD
Author : Brett Lantz
language : en
Publisher: Packt Publishing
Release Date : 2019-04-15

Machine Learning With R Third Edition written by Brett Lantz and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.


Solve real-world data problems with R and machine learning Key Features Third edition of the bestselling, widely acclaimed R machine learning book, updated and improved for R 3.6 and beyond Harness the power of R to build flexible, effective, and transparent machine learning models Learn quickly with a clear, hands-on guide by experienced machine learning teacher and practitioner, Brett Lantz Book Description Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. What you will learn Discover the origins of machine learning and how exactly a computer learns by example Prepare your data for machine learning work with the R programming language Classify important outcomes using nearest neighbor and Bayesian methods Predict future events using decision trees, rules, and support vector machines Forecast numeric data and estimate financial values using regression methods Model complex processes with artificial neural networks -- the basis of deep learning Avoid bias in machine learning models Evaluate your models and improve their performance Connect R to SQL databases and emerging big data technologies such as Spark, H2O, and TensorFlow Who this book is for Data scientists, students, and other practitioners who want a clear, accessible guide to machine learning with R.



Building Machine Learning And Deep Learning Models On Google Cloud Platform


Building Machine Learning And Deep Learning Models On Google Cloud Platform
DOWNLOAD
Author : Ekaba Bisong
language : en
Publisher:
Release Date : 2019

Building Machine Learning And Deep Learning Models On Google Cloud Platform written by Ekaba Bisong and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Cloud computing categories.


Take a systematic approach to understanding the fundamentals of machine learning and deep learning from the ground up and how they are applied in practice. You will use this comprehensive guide for building and deploying learning models to address complex use cases while leveraging the computational resources of Google Cloud Platform. Author Ekaba Bisong shows you how machine learning tools and techniques are used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. He teaches you how deep learning extends the machine learning algorithm of neural networks to learn complex tasks that are difficult for computers to perform, such as recognizing faces and understanding languages. And you will know how to leverage cloud computing to accelerate data science and machine learning deployments. Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into eight parts that cover the fundamentals of machine learning and deep learning, the concept of data science and cloud services, programming for data science using the Python stack, Google Cloud Platform (GCP) infrastructure and products, advanced analytics on GCP, and deploying end-to-end machine learning solution pipelines on GCP. You will: Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results Know the programming concepts relevant to machine and deep learning design and development using the Python stack Build and interpret machine and deep learning models Use Google Cloud Platform tools and services to develop and deploy large-scale machine learning and deep learning products Be aware of the different facets and design choices to consider when modeling a learning problem Productionalize machine learning models into software products.