Fundamentals Of Probability A First Course

DOWNLOAD
Download Fundamentals Of Probability A First Course PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fundamentals Of Probability A First Course book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fundamentals Of Probability A First Course
DOWNLOAD
Author : Anirban DasGupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-04-02
Fundamentals Of Probability A First Course written by Anirban DasGupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-02 with Mathematics categories.
Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Introduction To Probability
DOWNLOAD
Author : Charles Miller Grinstead
language : en
Publisher: American Mathematical Soc.
Release Date : 1997
Introduction To Probability written by Charles Miller Grinstead and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
This text is designed for an introductory probability course at the university level for undergraduates in mathematics, the physical and social sciences, engineering, and computer science. It presents a thorough treatment of probability ideas and techniques necessary for a firm understanding of the subject.
A Modern Introduction To Probability And Statistics
DOWNLOAD
Author : F.M. Dekking
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30
A Modern Introduction To Probability And Statistics written by F.M. Dekking and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.
Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap.
Introduction To Probability Statistics And Random Processes
DOWNLOAD
Author : Hossein Pishro-Nik
language : en
Publisher:
Release Date : 2014-08-15
Introduction To Probability Statistics And Random Processes written by Hossein Pishro-Nik and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-15 with Probabilities categories.
The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
A Basic Course In Probability Theory
DOWNLOAD
Author : Rabi Bhattacharya
language : en
Publisher: Springer
Release Date : 2017-02-13
A Basic Course In Probability Theory written by Rabi Bhattacharya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-13 with Mathematics categories.
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.
A First Course In Probability
DOWNLOAD
Author : Sheldon M. Ross
language : en
Publisher:
Release Date : 2002
A First Course In Probability written by Sheldon M. Ross and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
P. 15.
Introduction To Probability
DOWNLOAD
Author : Joseph K. Blitzstein
language : en
Publisher: CRC Press
Release Date : 2014-07-24
Introduction To Probability written by Joseph K. Blitzstein and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-24 with Mathematics categories.
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Probability And Conditional Expectation
DOWNLOAD
Author : Rolf Steyer
language : en
Publisher: John Wiley & Sons
Release Date : 2017-03-10
Probability And Conditional Expectation written by Rolf Steyer and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-10 with Mathematics categories.
Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.
Fundamentals Of Mathematical Statistics
DOWNLOAD
Author : Hung T. Nguyen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Fundamentals Of Mathematical Statistics written by Hung T. Nguyen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are "interesting but not essential" (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also "INE". We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial.
Probability With R
DOWNLOAD
Author : Jane M. Horgan
language : en
Publisher: John Wiley & Sons
Release Date : 2019-12-18
Probability With R written by Jane M. Horgan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-18 with Mathematics categories.
Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.