Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification

DOWNLOAD
Download Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification
DOWNLOAD
Author : Anil Kumar
language : en
Publisher: CRC Press
Release Date : 2020-07-19
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification written by Anil Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-19 with Computers categories.
This book covers the state-of-art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy machine learning and deep learning algorithms. Both types of algorithms are described in such details that these can be implemented directly for thematic mapping of multiple-class or specific-class landcover from multispectral optical remote sensing data. These algorithms along with multi-date, multi-sensor remote sensing are capable to monitor specific stage (for e.g., phenology of growing crop) of a particular class also included. With these capabilities fuzzy machine learning algorithms have strong applications in areas like crop insurance, forest fire mapping, stubble burning, post disaster damage mapping etc. It also provides details about the temporal indices database using proposed Class Based Sensor Independent (CBSI) approach supported by practical examples. As well, this book addresses other related algorithms based on distance, kernel based as well as spatial information through Markov Random Field (MRF)/Local convolution methods to handle mixed pixels, non-linearity and noisy pixels. Further, this book covers about techniques for quantiative assessment of soft classified fraction outputs from soft classification and supported by in-house developed tool called sub-pixel multi-spectral image classifier (SMIC). It is aimed at graduate, postgraduate, research scholars and working professionals of different branches such as Geoinformation sciences, Geography, Electrical, Electronics and Computer Sciences etc., working in the fields of earth observation and satellite image processing. Learning algorithms discussed in this book may also be useful in other related fields, for example, in medical imaging. Overall, this book aims to: exclusive focus on using large range of fuzzy classification algorithms for remote sensing images; discuss ANN, CNN, RNN, and hybrid learning classifiers application on remote sensing images; describe sub-pixel multi-spectral image classifier tool (SMIC) to support discussed fuzzy and learning algorithms; explain how to assess soft classified outputs as fraction images using fuzzy error matrix (FERM) and its advance versions with FERM tool, Entropy, Correlation Coefficient, Root Mean Square Error and Receiver Operating Characteristic (ROC) methods and; combines explanation of the algorithms with case studies and practical applications.
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification
DOWNLOAD
Author : A. Senthil Kumar
language : en
Publisher: CRC Press
Release Date : 2020-07-19
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification written by A. Senthil Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-19 with Computers categories.
This book covers the state-of-art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy machine learning and deep learning algorithms. Both types of algorithms are described in such details that these can be implemented directly for thematic mapping of multiple-class or specific-class landcover from multispectral optical remote sensing data. These algorithms along with multi-date, multi-sensor remote sensing are capable to monitor specific stage (for e.g., phenology of growing crop) of a particular class also included. With these capabilities fuzzy machine learning algorithms have strong applications in areas like crop insurance, forest fire mapping, stubble burning, post disaster damage mapping etc. It also provides details about the temporal indices database using proposed Class Based Sensor Independent (CBSI) approach supported by practical examples. As well, this book addresses other related algorithms based on distance, kernel based as well as spatial information through Markov Random Field (MRF)/Local convolution methods to handle mixed pixels, non-linearity and noisy pixels. Further, this book covers about techniques for quantiative assessment of soft classified fraction outputs from soft classification and supported by in-house developed tool called sub-pixel multi-spectral image classifier (SMIC). It is aimed at graduate, postgraduate, research scholars and working professionals of different branches such as Geoinformation sciences, Geography, Electrical, Electronics and Computer Sciences etc., working in the fields of earth observation and satellite image processing. Learning algorithms discussed in this book may also be useful in other related fields, for example, in medical imaging. Overall, this book aims to: exclusive focus on using large range of fuzzy classification algorithms for remote sensing images; discuss ANN, CNN, RNN, and hybrid learning classifiers application on remote sensing images; describe sub-pixel multi-spectral image classifier tool (SMIC) to support discussed fuzzy and learning algorithms; explain how to assess soft classified outputs as fraction images using fuzzy error matrix (FERM) and its advance versions with FERM tool, Entropy, Correlation Coefficient, Root Mean Square Error and Receiver Operating Characteristic (ROC) methods and; combines explanation of the algorithms with case studies and practical applications.
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification
DOWNLOAD
Author : A Senthil Kumar
language : en
Publisher:
Release Date : 2020-08
Fuzzy Machine Learning Algorithms For Remote Sensing Image Classification written by A Senthil Kumar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08 with categories.
"This book covers the state of art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy based learning methods including applications for preparing land cover classification outputs from actual satellite data. It provides details about the temporal indices database using proposed class-based sensor independent approach supported by practical examples. Fuzzy based algorithms with machine learning algorithms to prepare land cover maps is discussed. Accuracy assessment for soft classification outputs are included and all algorithms are supported by in-house developed tool as Sub-pixel Multi-spectral Image Classifier"--
Multi Sensor And Multi Temporal Remote Sensing
DOWNLOAD
Author : Anil Kumar
language : en
Publisher: CRC Press
Release Date : 2023-04-17
Multi Sensor And Multi Temporal Remote Sensing written by Anil Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-17 with Computers categories.
This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields. Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
The 2021 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy
DOWNLOAD
Author : John Macintyre
language : en
Publisher: Springer Nature
Release Date : 2021-11-02
The 2021 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy written by John Macintyre and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-02 with Computers categories.
This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.
Multisensor Data Fusion And Machine Learning For Environmental Remote Sensing
DOWNLOAD
Author : Ni-Bin Chang
language : en
Publisher: CRC Press
Release Date : 2018-02-21
Multisensor Data Fusion And Machine Learning For Environmental Remote Sensing written by Ni-Bin Chang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Technology & Engineering categories.
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Computational Intelligence And Intelligent Systems
DOWNLOAD
Author : Zhenhua Li
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-10-05
Computational Intelligence And Intelligent Systems written by Zhenhua Li and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-05 with Computers categories.
Volumes CCIS 51 and LNCS 5812 constitute the proceedings of the Fourth Interational Symposium on Intelligence Computation and Applications, ISICA 2009, held in Huangshi, China, during October 23-25. ISICA 2009 attracted over 300 submissions. Through rigorous reviews, 58 papers were included in LNCS 5821,and 54 papers were collected in CCIS 51. ISICA conferences are one of the first series of international conferences on computational intelligence that combine elements of learning, adaptation, evolution and fuzzy logic to create programs as alternative solutions to artificial intelligence.
Classification Methods For Remotely Sensed Data
DOWNLOAD
Author : Taskin Kavzoglu
language : en
Publisher: CRC Press
Release Date : 2024-09-04
Classification Methods For Remotely Sensed Data written by Taskin Kavzoglu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-04 with Technology & Engineering categories.
The third edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data. This book is thoroughly updated to meet the needs of readers today and provides six new chapters on deep learning, feature extraction and selection, multisource image fusion, hyperparameter optimization, accuracy assessment with model explainability, and object-based image analysis, which is relatively a new paradigm in image processing and classification. It presents new AI-based analysis tools and metrics together with ongoing debates on accuracy assessment strategies and XAI methods. New in this edition: Provides comprehensive background on the theory of deep learning and its application to remote sensing data. Includes a chapter on hyperparameter optimization techniques to guarantee the highest performance in classification applications. Outlines the latest strategies and accuracy measures in accuracy assessment and summarizes accuracy metrics and assessment strategies. Discusses the methods used for explaining inherent structures and weighing the features of ML and AI algorithms that are critical for explaining the robustness of the models. This book is intended for industry professionals, researchers, academics, and graduate students who want a thorough and up-to-date guide to the many and varied techniques of image classification applied in the fields of geography, geospatial and earth sciences, electronic and computer science, environmental engineering, etc.
Mathematical Models For Remote Sensing Image Processing
DOWNLOAD
Author : Gabriele Moser
language : en
Publisher: Springer
Release Date : 2017-11-28
Mathematical Models For Remote Sensing Image Processing written by Gabriele Moser and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-28 with Technology & Engineering categories.
This book maximizes reader insights into the field of mathematical models and methods for the processing of two-dimensional remote sensing images. It presents a broad analysis of the field, encompassing passive and active sensors, hyperspectral images, synthetic aperture radar (SAR), interferometric SAR, and polarimetric SAR data. At the same time, it addresses highly topical subjects involving remote sensing data types (e.g., very high-resolution images, multiangular or multiresolution data, and satellite image time series) and analysis methodologies (e.g., probabilistic graphical models, hierarchical image representations, kernel machines, data fusion, and compressive sensing) that currently have primary importance in the field of mathematical modelling for remote sensing and image processing. Each chapter focuses on a particular type of remote sensing data and/or on a specific methodological area, presenting both a thorough analysis of the previous literature and a methodological and experimental discussion of at least two advanced mathematical methods for information extraction from remote sensing data. This organization ensures that both tutorial information and advanced subjects are covered. With each chapter being written by research scientists from (at least) two different institutions, it offers multiple professional experiences and perspectives on each subject. The book also provides expert analysis and commentary from leading remote sensing and image processing researchers, many of whom serve on the editorial boards of prestigious international journals in these fields, and are actively involved in international scientific societies. Providing the reader with a comprehensive picture of the overall advances and the current cutting-edge developments in the field of mathematical models for remote sensing image analysis, this book is ideal as both a reference resource and a textbook for graduate and doctoral students as well as for remote sensing scientists and practitioners.
Environmental Remote Sensing And Systems Analysis
DOWNLOAD
Author : Ni-Bin Chang
language : en
Publisher: CRC Press
Release Date : 2012-03-23
Environmental Remote Sensing And Systems Analysis written by Ni-Bin Chang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-23 with Science categories.
Using a systems analysis approach and extensive case studies, Environmental Remote Sensing and Systems Analysis shows how remote sensing can be used to support environmental decision making. It presents a multidisciplinary framework and the latest remote sensing tools to understand environmental impacts, management complexity, and policy implicatio