[PDF] Gallium Nitride Based Hemt Devices Modeling And Performance Characterization - eBooks Review

Gallium Nitride Based Hemt Devices Modeling And Performance Characterization


Gallium Nitride Based Hemt Devices Modeling And Performance Characterization
DOWNLOAD

Download Gallium Nitride Based Hemt Devices Modeling And Performance Characterization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Gallium Nitride Based Hemt Devices Modeling And Performance Characterization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Gallium Nitride Based Hemt Devices Modeling And Performance Characterization


Gallium Nitride Based Hemt Devices Modeling And Performance Characterization
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2008

Gallium Nitride Based Hemt Devices Modeling And Performance Characterization written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with categories.




Gan Based Materials And Devices Growth Fabrication Characterization And Performance


Gan Based Materials And Devices Growth Fabrication Characterization And Performance
DOWNLOAD
Author : Robert F Davis
language : en
Publisher: World Scientific
Release Date : 2004-05-07

Gan Based Materials And Devices Growth Fabrication Characterization And Performance written by Robert F Davis and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-07 with Technology & Engineering categories.


The unique materials properties of GaN-based semiconductors have stimulated a great deal of interest in research and development regarding nitride materials growth and optoelectronic and nitride-based electronic devices. High electron mobility and saturation velocity, high sheet carrier concentration at heterojunction interfaces, high breakdown field, and low thermal impedance of GaN-based films grown over SiC or bulk AlN substrates make nitride-based electronic devices very promising. The chemical inertness of nitrides is another key property.This volume, written by experts on different aspects of nitride technology, addresses the entire spectrum of issues related to nitride materials and devices, and it will be useful for technologists, scientists, engineers, and graduate students who are working on wide bandgap materials and devices. The book can also be used as a supplementary text for graduate courses on wide bandgap semiconductor technology.



Hemt Technology And Applications


Hemt Technology And Applications
DOWNLOAD
Author : Trupti Ranjan Lenka
language : en
Publisher: Springer Nature
Release Date : 2022-06-23

Hemt Technology And Applications written by Trupti Ranjan Lenka and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-23 with Technology & Engineering categories.


This book covers two broad domains: state-of-the-art research in GaN HEMT and Ga2O3 HEMT. Each technology covers materials system, band engineering, modeling and simulations, fabrication techniques, and emerging applications. The book presents basic operation principles of HEMT, types of HEMT structures, and semiconductor device physics to understand the device behavior. The book presents numerical modeling of the device and TCAD simulations for high-frequency and high-power applications. The chapters include device characteristics of HEMT including 2DEG density, Id-Vgs, Id-Vds, transconductance, linearity, and C-V. The book emphasizes the state-of-the-art fabrication techniques of HEMT and circuit design for various applications in low noise amplifier, oscillator, power electronics, and biosensor applications. The book focuses on HEMT applications to meet the ever-increasing demands of the industry, innovation in terms of materials, design, modeling, simulation, processes, and circuits. The book will be primarily helpful to undergraduate/postgraduate, researchers, and practitioners in their research.



Temperature Dependent Analytical Modeling Simulation And Characterizations Of Hemts In Gallium Nitride Process


Temperature Dependent Analytical Modeling Simulation And Characterizations Of Hemts In Gallium Nitride Process
DOWNLOAD
Author : Hasina F. Huq
language : en
Publisher:
Release Date : 2006

Temperature Dependent Analytical Modeling Simulation And Characterizations Of Hemts In Gallium Nitride Process written by Hasina F. Huq and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with categories.


Research is being conducted for a high-performance building block for high frequency and high temperature applications that combine lower costs with improved performance and manufacturability. Researchers have focused their attention on new semiconductor materials for use in device technology to address system improvements. Of the contenders, silicon carbide (SiC), gallium nitride (GaN), and diamond are emerging as the front-runners. GaN-based electronic devices, AlGaN/GaN heterojunction field effect transistors (HFETs), are the leading candidates for achieving ultra-high frequency and high-power amplifiers. Recent advances in device and amplifier performance support this claim. GaN is comparable to the other prominent material options for high-performance devices. The dissertation presents the work on analytical modeling and simulation of GaN high power HEMT and MOS gate HEMT, model verification with test data and device characterization at elevated temperatures. The model takes into account the carrier mobility, the doping densities, the saturation velocity, and the thickness of different layers. Considering the GaN material processing limitations and feedback from the simulation results, an application specific AlGaN/GaN RF power HEMT structure has been proposed. The doping concentrations and the thickness of various layers are selected to provide adequate channel charge density for the proposed devices. A good agreement between the analytical model, and the experimental data is demonstrated. The proposed temperature model can operate at higher voltages and shows stable operation of the devices at higher temperatures. The investigated temperature range is from 100°K to 600°K. The temperature models include the effect of temperature variation on the threshold voltage, carrier mobility, bandgap and saturation velocity. The calculated values of the critical parameters suggest that the proposed device can operate in the GHz range for temperature up to 600°K, which indicates that the device could survive in extreme environments. The models developed in this research will not only help the wide bandgap device researchers in the device behavioral study but will also provide valuable information for circuit designers.



Gan Based Hemts For High Voltage Operation Design Technology And Characterization


Gan Based Hemts For High Voltage Operation Design Technology And Characterization
DOWNLOAD
Author : Eldad Bahat-Treidel
language : en
Publisher: Cuvillier Verlag
Release Date : 2012-06-08

Gan Based Hemts For High Voltage Operation Design Technology And Characterization written by Eldad Bahat-Treidel and has been published by Cuvillier Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-08 with Science categories.


Gallium nitride (GaN)-based High Electron Mobility Transistors (HEMTs) for high voltage, high power switching and regulating for space applications are studied in this work. Efficient power switching is associated with operation in high OFF-state blocking voltage while keeping the ON-state resistance, the dynamic dispersion and leakage currents as low as possible. The potential of such devices to operate at high voltages is limited by a chain of factors such as subthreshold leakages and the device geometry. Blocking voltage enhancement is a complicated problem that requires parallel methods for solution; epitaxial layers design, device structural and geometry design, and suitable semiconductor manufacturing technique. In this work physical-based device simulation as an engineering tool was developed. An overview on GaN-based HEMTs physical based device simulation using Silvaco-“ATLAS” is given. The simulation is utilized to analyze, give insight to the modes of operation of the device and for design and evaluation of innovative concepts. Physical-based models that describe the properties of the semiconductor material are introduced. A detailed description of the specific AlGaN/GaN HEMT structure definition and geometries are given along with the complex fine meshing requirements. Nitride-semiconductor specific material properties and their physical models are reviewed focusing on the energetic band structure, epitaxial strain tensor calculation in wurtzite materials and build-in polarization models. Special attention for thermal conductivity, carriers’ mobility and Schottky-gate-reverse-bias-tunneling is paid. Empirical parameters matching and adjustment of models parameters to match the experimental device measured results are discussed. An enhancement of breakdown voltage in AlxGa1-xN/GaN HEMT devices by increasing the electron confinement in the transistor channel using a low Al content AlyGa1-yN back-barrier layer structure is systematically studied. It is shown that the reduced sub-threshold drain-leakage current through the buffer layer postpones the punch-through and therefore shifts the breakdown of the device to higher voltages. It is also shown that the punch-through voltage (VPT) scales up with the device dimensions (gate to drain separation). An optimized electron confinement results both, in a scaling of breakdown voltage with device geometry and a significantly reduced sub-threshold drain and gate leakage currents. These beneficial properties are pronounced even further if gate recess technology is applied for device fabrication. For the systematic study a large variations of back-barrier epitaxial structures were grown on sapphire, n-type 4H-SiC and semi-insulating 4H-SiC substrates. The devices with 5 μm gate-drain separation grown on n-SiC owning Al0.05Ga0.95N and Al0.10Ga0.90N back-barrier exhibit 304 V and 0.43 m × cm2 and 342 V and 0.41 m × cm2 respectively. To investigate the impact of AlyGa1-yN back-barrier on the device properties the devices were characterized in DC along with microwave mode and robustness DC-step-stress test. Physical-based device simulations give insight in the respective electronic mechanisms and to the punch-through process that leads to device breakdown. Systematic study of GaN-based HEMT devices with insulating carbon-doped GaN back-barrier for high voltage operation is also presented. Suppression of the OFF-state sub-threshold drain leakage-currents enables breakdown voltage enhancement over 1000 V with low ON-state resistance. The devices with 5 μm gate-drain separation on SI-SiC and 7 μm gate-drain separation on n-SiC exhibit 938 V and 0.39 m × cm2 and 942 V and 0.39 m × cm2 respectively. Power device figure of merit of ~2.3 × 109 V2/-cm2 was calculated for these devices. The impacts of variations of carbon doping concentration, GaN channel thickness and substrates are evaluated. Trade-off considerations in ON-state resistance and of current collapse are addressed. A novel GaN-based HEMTs with innovative planar Multiple-Grating-Field-Plates (MGFPs) for high voltage operation are described. A synergy effect with additional electron channel confinement by using a heterojunction AlGaN back-barrier is demonstrated. Suppression of the OFF-state sub-threshold gate and drain leakage-currents enables breakdown voltage enhancement over 700 V and low ON-state resistance of 0.68 m × cm2. Such devices have a minor trade-off in ON-state resistance, lag factor, maximum oscillation frequency and cut-off frequency. Systematic study of the MGFP design and the effect of Al composition in the back-barrier are described. Physics-based device simulation results give insight into electric field distribution and charge carrier concentration depending on field-plate design. The GaN superior material breakdown strength properties are not always a guarantee for high voltage devices. In addition to superior epitaxial growth design and optimization for high voltage operation the device geometrical layout design and the device manufacturing process design and parameters optimization are important criteria for breakdown voltage enhancement. Smart layout prevent immature breakdown due to lateral proximity of highly biased interconnects. Optimization of inter device isolation designed for high voltage prevents substantial subthreshold leakage. An example for high voltage test device layout design and an example for critical inter-device insulation manufacturing process optimization are presented. While major efforts are being made to improve the forward blocking performance, devices with reverse blocking capability are also desired in a number of applications. A novel GaN-based HEMT with reverse blocking capability for Class-S switch-mode amplifiers is introduced. The high voltage protection is achieved by introducing an integrated recessed Schottky contact as a drain electrode. Results from our Schottky-drain HEMT demonstrate an excellent reverse blocking with minor trade-off in the ON-state resistance for the complete device. The excellent quality of the forward diode characteristics indicates high robustness of the recess process. The reverse blocking capability of the diode is better than –110 V. Physical-based device simulations give insight in the respective electronic mechanisms. Zusammenfassung In dieser Arbeit wurden Galliumnitrid (GaN)-basierte Hochspannungs-HEMTs (High Electron Mobility Transistor) für Hochleistungsschalt- und Regelanwendungen in der Raumfahrt untersucht. Effizientes Leistungsschalten erfordert einen Betrieb bei hohen Sperrspannungen gepaart mit niedrigem Einschaltwiderstand, geringer dynamischer Dispersion und minimalen Leckströmen. Dabei wird das aus dem Halbleitermaterial herrührende Potential für extrem spannungsfeste Transistoren aufgrund mehrerer Faktoren aus dem lateralen und dem vertikalen Bauelementedesign oft nicht erreicht. Physikalisch-basierte Simulationswerkzeuge für die Bauelemente wurden daher entwickelt. Die damit durchgeführte Analyse der unterschiedlichen Transistorbetriebszustände ermöglichte das Entwickeln innovativer Bauelementdesignkonzepte. Das Erhöhen der Bauelementsperrspannung erfordert parallele und ineinandergreifende Lösungsansätze für die Epitaxieschichten, das strukturelle und das geometrische Design und für die Prozessierungstechnologie. Neuartige Bauelementstrukturen mit einer rückseitigen Kanalbarriere (back-barrier) aus AlGaN oder Kohlenstoff-dotierem GaN in Kombination mit neuartigen geometrischen Strukturen wie den Mehrfachgitterfeldplatten (MGFP, Multiple-Grating-Field-Plate) wurden untersucht. Die elektrische Gleichspannungscharakterisierung zeigte dabei eine signifikante Verringerung der Leckströme im gesperrten Zustand. Dies resultierte bei nach wie vor sehr kleinem Einschaltwiderstand in einer Durchbruchspannungserhöhung um das etwa Zehnfache auf über 1000 V. Vorzeitige Spannungsüberschläge aufgrund von Feldstärkenspitzen an Verbindungsmetallisierungen werden durch ein geschickt gestaltetes Bauelementlayout verhindert. Eine Optimierung der Halbleiterisolierung zwischen den aktiven Strukturen führte auch im kV-Bereich zu vernachlässigbaren Leckströme. Während das Hauptaugenmerk der Arbeit auf der Erhöhung der Spannungsfestigkeit im Vorwärtsbetrieb des Transistors lag, ist für einige Anwendung auch ein rückwärtiges Sperren erwünscht. Für Schaltverstärker im S-Klassenbetrieb wurde ein neuartiger GaN-HEMT entwickelt, dessen rückwärtiges Sperrverhalten durch einen tiefgelegten Schottkykontakt als Drainelektrode hervorgerufen wird. Eine derartige Struktur ergab eine rückwärtige Spannungsfestigkeit von über 110 V.



Design Fabrication And Characterization Of Gallium Nitride High Electron Mobility Transistors


Design Fabrication And Characterization Of Gallium Nitride High Electron Mobility Transistors
DOWNLOAD
Author : Jonathan George Felbinger
language : en
Publisher:
Release Date : 2010

Design Fabrication And Characterization Of Gallium Nitride High Electron Mobility Transistors written by Jonathan George Felbinger and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.


Over the past few years, systems based on gallium nitride high-electron-mobility transistors (GaN HEMTs) have increasingly penetrated the markets for cellular telephone base stations, RADAR, and satellite communications. High power (several W/mm), continuous-wave (CW) operation of microwave HEMTs dissipates heat; as the device increases in temperature, its electron mobility drops and performance degrades. To enhance high-power performance and enable operation in high ambient temperature environments, the AlxGa1[-]xN/GaN epitaxial layers are attached to polycrystalline diamond substrates. e lower surface temperature rise on GaN-on- diamond is directly measured; subsequently, improved electrical performance is demonstrated on diamond versus the native (Si) substrates. Benchmark AlxGa1[-]xN/GaN devices are fabricated on SiC for comparison to diamond, Si, and bulk GaN substrates; the merits and performance of each is compared. In collaboration with Group4 Labs, X-band amplifier modules based on GaN-on-diamond HEMTs have been demonstrated for the first time. Recent efforts have focused on substituting AlxIn1[-]xN barriers in place of AlxGa1[-]xN to achieve higher output power at microwave frequencies and addressing the challenges of this new material system. Ultimately, these techniques may be combined to attain the utmost in device performance.



Modeling Gallium Nitride Based High Electron Mobility Transistors


Modeling Gallium Nitride Based High Electron Mobility Transistors
DOWNLOAD
Author : Ujwal Radhakrishna
language : en
Publisher:
Release Date : 2016

Modeling Gallium Nitride Based High Electron Mobility Transistors written by Ujwal Radhakrishna and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


Gallium-Nitride-based high electron mobility transistor (HEMTs) technology is increasingly finding space in high voltage (HV) and high frequency (HF) circuit application domains. The superior breakdown electric field, high electron mobility, and high temperature performance of GaN HEMTs are the key factors for its use as HV switches in converters and active components of RF-power amplifiers. Designing circuits in both application regimes requires accurate compact device models that are grounded in physics and can describe the non-linear terminal characteristics. Currently available compact models for HEMTs are empirical and hence are lacking in physical description of the device, which becomes a handicap in understanding key device-circuit interactions and in accurate estimation of device behavior in circuits. This thesis seeks to develop a physics-based compact model for GaN HEMTs from first principles which can be used as a design tool for technology optimization to identify device-performance bottlenecks on one hand and as a tool for circuit design to investigate the impact of behavioral nuances of the device on circuit performance, on the other. Part of this thesis consists of demonstrations of the capabilities of the model to accurately predict device characteristics such as terminal DC- and pulsed-currents, charges, small-signal S-parameters, large-signal switching characteristics, load-pull, source-pull and power-sweep, inter-modulation-distortion and noise-figure of both HV- and RF-devices. The thesis also aims to tie device-physics concepts of carrier transport and charge distribution in GaN HEMTs to circuit-design through circuit-level evaluation. In the HV-application regime benchmarking is conducted against switching characteristics of a GaN DC-DC converter to understand the impact of device capacitances, field plates, temperature and charge-trapping on switching slew rates. In the RF-application regime validation is done against the large-signal characteristics of GaN-power amplifiers to study the output-power, efficiency and compression characteristics as function of class-of-operation. Noise-figure of low-noise amplifiers is tested to estimate the contributions of device-level noise sources, and validation against switching frequency and phase-noise characteristics of voltage-controlled oscillators is done to evaluate the noise performance of GaN HEMT technology. Evaluation of model-accuracy in determining the conversion-efficiency of RF-converters and linearity metrics of saturated non-linear amplifiers is carried out. The key contribution of this work is to provide a tool in the form of a physics-based compact model to device-technology-engineers and circuit-designers, who can use it to evaluate the potential strengths and weaknesses of the emerging GaN technology.



Advanced Algan Gan Hemt Technology Design Fabrication And Characterization


Advanced Algan Gan Hemt Technology Design Fabrication And Characterization
DOWNLOAD
Author : Abel Fontserè Recuenco
language : en
Publisher:
Release Date : 2014

Advanced Algan Gan Hemt Technology Design Fabrication And Characterization written by Abel Fontserè Recuenco and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its voltage blocking capability, operation temperature and switching frequency. In this sense, Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) devices have the potential to make this change possible. The unique combination of the high-breakdown field, the high-channel electron mobility of the two dimensional electron gas (2DEG), and high-temperature of operation has attracted enormous interest from social, academia and industry and in this context this PhD dissertation has been made. This thesis has focused on improving the device performance through the advanced design, fabrication and characterization of AlGaN/GaN HEMTs, primarily grown on Si templates. The first milestone of this PhD dissertation has been the establishment of a know-how on GaN HEMT technology from several points of view: the device design, the device modeling, the process fabrication and the advanced characterization primarily using devices fabricated at Centre de Recherche sur l'Hétéro-Epitaxie (CRHEA-CNRS) (France) in the framework of a collaborative project. In this project, the main workhorse of this dissertation was the explorative analysis performed on the AlGaN/GaN HEMTs by innovative electrical and physical characterization methods. A relevant objective of this thesis was also to merge the nanotechnology approach with the conventional characterization techniques at the device scale to understand the device performance. A number of physical characterization techniques have been imaginatively used during this PhD determine the main physical parameters of our devices such as the morphology, the composition, the threading dislocations density, the nanoscale conductive pattern and others. The conductive atomic force microscopy (CAFM) tool have been widely described and used to understand the conduction mechanisms through the AlGaN/GaN Ohmic contact by performing simultaneously topography and electrical conductivity measurements. As it occurs with the most of the electronic switches, the gate stack is maybe the critical part of the device in terms of performance and longtime reliability. For this reason, how the AlGaN/GaN HEMT gate contact affects the overall HEMT behaviour by means of advanced characterization and modeling has been intensively investigated. It is worth mentioning that the high-temperature characterization is also a cornerstone of this PhD. It has been reported the elevated temperature impact on the forward and the reverse leakage currents for analogous Schottky gate HEMTs grown on different substrates: Si, sapphire and free-standing GaN (FS-GaN). The HEMT' forward-current temperature coefficients (T̂a) as well as the thermal activation energies have been determined in the range of 25-300 oC. Besides, the impact of the elevated temperature on the Ohmic and gate contacts has also been investigated. The main results of the gold-free AlGaN/GaN HEMTs high-voltage devices fabricated with a 4 inch Si CMOS compatible technology at the clean room of the CNM in the framework of the industrial contract with ON semiconductor were presented. We have shown that the fabricated devices are in the state-of-the-art (gold-free Ohmic and Schottky contacts) taking into account their power device figure-of-merit ((VB̂2)/Ron) of 4.05×10̂8 W/cm̂2. Basically, two different families of AlGaN/GaN-on-Si MIS-HEMTs devices were fabricated on commercial 4 inch wafers: (i) using a thin ALD HfO2 (deposited on the CNM clean room) and (ii) thin in-situ grown Si3N4, as a gate insulator (grown by the vendor). The scientific impact of this PhD in terms of science indicators is of 17 journal papers (8 as first author) and 10 contributions at international conferences.



Two Dimensional Modeling Of Aluminum Gallium Nitride Gallium Nitride High Electron Mobility Transistor


Two Dimensional Modeling Of Aluminum Gallium Nitride Gallium Nitride High Electron Mobility Transistor
DOWNLOAD
Author : Kenneth L. Holmes
language : en
Publisher:
Release Date : 2002-06-01

Two Dimensional Modeling Of Aluminum Gallium Nitride Gallium Nitride High Electron Mobility Transistor written by Kenneth L. Holmes and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-06-01 with categories.


Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems. The Office of Naval Research (ONR) is funding research for the development of GaN- based microwave power amplifiers for use in future radar and communication systems. This thesis studies the effects of AIGaN/GaN HEMTs' polarization, piezoelectric (PZ) and spontaneous, properties utilizing the TM commercially available Silvaco Atlas software for modeling and simulation. The polarization properties are suspected to enhance the two-dimensional electron gas (2DEG) at the AIGaN/GaN interface.



Gallium Nitride High Mobility Electron Transistors For Power Amplification Applications


Gallium Nitride High Mobility Electron Transistors For Power Amplification Applications
DOWNLOAD
Author : Oliver Peter Amnuayphol
language : en
Publisher:
Release Date : 2019

Gallium Nitride High Mobility Electron Transistors For Power Amplification Applications written by Oliver Peter Amnuayphol and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Wide gap semiconductors categories.


With increasing demand for high power density switching devices and a more advanced cellular network, i.e. 5G, on the impending horizon, wide-bandgap semiconductors are quickly becoming the de facto semiconductor device type to serve this need, of which the Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) device in particular has seen increasing demand due to its unique combination of favorable compound material characteristics and highly efficient operation. In this project, GaN HEMT devices are designed, fabricated, and characterized, and a 12-element, empirical equivalent circuit for GaN HEMTs is modeled. For modeling, published intrinsic and extrinsic characteristics of a selected device were analyzed and used as a template for creating a Symbolically Defined Device (SSD) model in Keysight’s Advanced Design System (ADS) software. This model was then used to obtain a key device characterization parameter, namely current-voltage (I-V) curves, through a curve-fitting process utilizing analytical equations. The AlGaN/GaN HEMT device design and fabrication process flow is discussed, after which the device is characterized and analyzed with regards to the impact of nitride stress liners on AlGaN/GaN HEMT device performance.