[PDF] Generalized Estimating Equations Second Edition - eBooks Review

Generalized Estimating Equations Second Edition


Generalized Estimating Equations Second Edition
DOWNLOAD

Download Generalized Estimating Equations Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Estimating Equations Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Generalized Estimating Equations Second Edition


Generalized Estimating Equations Second Edition
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: CRC Press
Release Date : 2012-12-10

Generalized Estimating Equations Second Edition written by James W. Hardin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-10 with Mathematics categories.


Generalized Estimating Equations, Second Edition updates the best-selling previous edition, which has been the standard text on the subject since it was published a decade ago. Combining theory and application, the text provides readers with a comprehensive discussion of GEE and related models. Numerous examples are employed throughout the text, along with the software code used to create, run, and evaluate the models being examined. Stata is used as the primary software for running and displaying modeling output; associated R code is also given to allow R users to replicate Stata examples. Specific examples of SAS usage are provided in the final chapter as well as on the book’s website. This second edition incorporates comments and suggestions from a variety of sources, including the Statistics.com course on longitudinal and panel models taught by the authors. Other enhancements include an examination of GEE marginal effects; a more thorough presentation of hypothesis testing and diagnostics, covering competing hierarchical models; and a more detailed examination of previously discussed subjects. Along with doubling the number of end-of-chapter exercises, this edition expands discussion of various models associated with GEE, such as penalized GEE, cumulative and multinomial GEE, survey GEE, and quasi-least squares regression. It also offers a thoroughly new presentation of model selection procedures, including the introduction of an extension to the QIC measure that is applicable for choosing among working correlation structures. See Professor Hilbe discuss the book.



Generalized Estimating Equations


Generalized Estimating Equations
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: CRC Press
Release Date : 2012-12-10

Generalized Estimating Equations written by James W. Hardin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-10 with Mathematics categories.


Generalized Estimating Equations, Second Edition updates the best-selling previous edition, which has been the standard text on the subject since it was published a decade ago. Combining theory and application, the text provides readers with a comprehensive discussion of GEE and related models. Numerous examples are employed throughout the text, al



Generalized Estimating Equations


Generalized Estimating Equations
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: CRC Press
Release Date : 2002-07-30

Generalized Estimating Equations written by James W. Hardin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-07-30 with Mathematics categories.


Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in heal



Generalized Estimating Equations


Generalized Estimating Equations
DOWNLOAD
Author : Andreas Ziegler
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-17

Generalized Estimating Equations written by Andreas Ziegler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-17 with Mathematics categories.


Generalized estimating equations have become increasingly popular in biometrical, econometrical, and psychometrical applications because they overcome the classical assumptions of statistics, i.e. independence and normality, which are too restrictive for many problems. Therefore, the main goal of this book is to give a systematic presentation of the original generalized estimating equations (GEE) and some of its further developments. Subsequently, the emphasis is put on the unification of various GEE approaches. This is done by the use of two different estimation techniques, the pseudo maximum likelihood (PML) method and the generalized method of moments (GMM). The author details the statistical foundation of the GEE approach using more general estimation techniques. The book could therefore be used as basis for a course to graduate students in statistics, biostatistics, or econometrics, and will be useful to practitioners in the same fields.



Multivariate Analysis For The Behavioral Sciences Second Edition


Multivariate Analysis For The Behavioral Sciences Second Edition
DOWNLOAD
Author : Kimmo Vehkalahti
language : en
Publisher: CRC Press
Release Date : 2018-12-19

Multivariate Analysis For The Behavioral Sciences Second Edition written by Kimmo Vehkalahti and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-19 with Mathematics categories.


Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics



Generalized Linear Models Second Edition


Generalized Linear Models Second Edition
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: CRC Press
Release Date : 1989-08-01

Generalized Linear Models Second Edition written by P. McCullagh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-08-01 with Mathematics categories.


The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.



R Primer Second Edition


R Primer Second Edition
DOWNLOAD
Author : Claus Thorn Ekstrom
language : en
Publisher: CRC Press
Release Date : 2017-02-24

R Primer Second Edition written by Claus Thorn Ekstrom and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-24 with Mathematics categories.


Newcomers to R are often intimidated by the command-line interface, the vast number of functions and packages, or the processes of importing data and performing a simple statistical analysis. The R Primer provides a collection of concise examples and solutions to R problems frequently encountered by new users of this statistical software. This new edition adds coverage of R Studio and reproducible research.



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : Raymond H. Myers
language : en
Publisher: John Wiley & Sons
Release Date : 2012-01-20

Generalized Linear Models written by Raymond H. Myers and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-20 with Mathematics categories.


Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.



Longitudinal Data Analysis


Longitudinal Data Analysis
DOWNLOAD
Author : Garrett Fitzmaurice
language : en
Publisher: CRC Press
Release Date : 2008-08-11

Longitudinal Data Analysis written by Garrett Fitzmaurice and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-11 with Mathematics categories.


Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory



An Introduction To Generalized Linear Models


An Introduction To Generalized Linear Models
DOWNLOAD
Author : Annette J. Dobson
language : en
Publisher: CRC Press
Release Date : 2018-04-17

An Introduction To Generalized Linear Models written by Annette J. Dobson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Mathematics categories.


An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice. Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods. Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis Connects Bayesian analysis and MCMC methods to fit GLMs Contains numerous examples from business, medicine, engineering, and the social sciences Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods Offers the data sets and solutions to the exercises online Describes the components of good statistical practice to improve scientific validity and reproducibility of results. Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.