[PDF] Generalized Linear Models With Random Effects - eBooks Review

Generalized Linear Models With Random Effects


Generalized Linear Models With Random Effects
DOWNLOAD

Download Generalized Linear Models With Random Effects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Linear Models With Random Effects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Walter W. Stroup
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Generalized Linear Mixed Models written by Walter W. Stroup and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: IMS
Release Date : 2003

Generalized Linear Mixed Models written by Charles E. McCulloch and has been published by IMS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models



Generalized Linear Models With Random Effects


Generalized Linear Models With Random Effects
DOWNLOAD
Author : Youngjo Lee
language : en
Publisher: CRC Press
Release Date : 2018-07-11

Generalized Linear Models With Random Effects written by Youngjo Lee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-11 with Mathematics categories.


This is the second edition of a monograph on generalized linear models with random effects that extends the classic work of McCullagh and Nelder. It has been thoroughly updated, with around 80 pages added, including new material on the extended likelihood approach that strengthens the theoretical basis of the methodology, new developments in variable selection and multiple testing, and new examples and applications. It includes an R package for all the methods and examples that supplement the book.



Generalized Linear And Mixed Models


Generalized Linear And Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20

Generalized Linear And Mixed Models written by Charles E. McCulloch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Social Science categories.


An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimation A new chapter that treats shared random effects models, latent class models, and properties of models A revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositions Expanded coverage of marginal versus conditional models Numerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers.



Generalized Linear Models With Random Effects


Generalized Linear Models With Random Effects
DOWNLOAD
Author : Youngjo Lee
language : en
Publisher: CRC Press
Release Date : 2006-07-13

Generalized Linear Models With Random Effects written by Youngjo Lee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-07-13 with Mathematics categories.


Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors. Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of which can be run by using the code supplied on the accompanying CD, this book is beneficial to statisticians and researchers involved in the above applications as well as quality-improvement experiments and missing-data analysis.



Extending The Linear Model With R


Extending The Linear Model With R
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2016-02-10

Extending The Linear Model With R written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-10 with Mathematics categories.


Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : Dipak K. Dey
language : en
Publisher: CRC Press
Release Date : 2000-05-25

Generalized Linear Models written by Dipak K. Dey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-05-25 with Mathematics categories.


This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.



Data Analysis Using Hierarchical Generalized Linear Models With R


Data Analysis Using Hierarchical Generalized Linear Models With R
DOWNLOAD
Author : Youngjo Lee
language : en
Publisher: CRC Press
Release Date : 2017-07-06

Data Analysis Using Hierarchical Generalized Linear Models With R written by Youngjo Lee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-06 with Mathematics categories.


Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.



Generalized Linear Models And Extensions


Generalized Linear Models And Extensions
DOWNLOAD
Author : M. Ataharul Islam
language : en
Publisher: Springer Nature
Release Date : 2025-04-30

Generalized Linear Models And Extensions written by M. Ataharul Islam and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-30 with Mathematics categories.


This book presents a wide range of topics to address the needs of several groups of users of rapidly growing methods of generalized linear models. Since the introduction of the idea of generalized linear models (GLM) in early seventies, during the past four decades the modelling of statistical data have experienced a major transformation from linear models based on normality assumption to a more flexible unified approach of generalized linear models. The number of readers and users of generalized linear models have increased manifold. In addition, the use of generalized linear models has expanded in many new fields of applications where statistical models are being employed at an increasing rate. It is important to note here that the learners and users of GLM have a widely varied background in different disciplines. Considering these pressing needs, this book focuses on: (i) upper undergraduate and graduate level students in need of a thorough understanding about the basic concepts of generalized linear models along with appropriate applications; (ii) researchers and users in need of advanced generalized linear models for analysing bivariate or multivariate data stemming from longitudinal or repeated measures data; and (iii) new challenges to analyse big data where the traditional techniques fail to provide any reasonable modelling strategy. In other words, this book starts with a thorough background of the generalized linear models for the new learners, then provides multivariate extensions to advanced level techniques for researchers and users in various disciplines, and finally some innovative modelling strategies are introduced using generalized linear models in the emerging field of big data analytics. It provides materials for new learners, for users/researchers who are in need of more advanced techniques and also strategies for employing linear models in big data analytics. Hence, techniques of generalized linear models will be presented in the proposed book covering the needs of new learners, users of advanced techniques, researchers in need of statistical modelling of any data type and users of big data analytics wanting to increase predictive accuracy of classification and regression tree techniques.



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : Jeff Gill
language : en
Publisher: SAGE Publications
Release Date : 2019-05-14

Generalized Linear Models written by Jeff Gill and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-14 with Social Science categories.


Generalized Linear Models: A Unified Approach provides an introduction to and overview of GLMs, with each chapter carefully laying the groundwork for the next. The Second Edition provides examples using real data from multiple fields in the social sciences such as psychology, education, economics, and political science, including data on voting intentions in the 2016 U.S. Republican presidential primaries. The Second Edition also strengthens material on the exponential family form, including a new discussion on the multinomial distribution; adds more information on how to interpret results and make inferences in the chapter on estimation procedures; and has a new section on extensions to generalized linear models. Software scripts, supporting documentation, data for the examples, and some extended mathematical derivations are available on the authors’ websites as well as through the \texttt{R} package \texttt{GLMpack}. Supporting material (data and code) to replicate the examples in the book can be found in the ′GLMpack′ package on CRAN or on the website&