Generalized Low Rank Models

DOWNLOAD
Download Generalized Low Rank Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generalized Low Rank Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Generalized Low Rank Models
DOWNLOAD
Author : Madeleine Udell
language : en
Publisher:
Release Date : 2015
Generalized Low Rank Models written by Madeleine Udell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.
Generalized Low Rank Models
DOWNLOAD
Author : Madeleine Udell
language : en
Publisher:
Release Date : 2016
Generalized Low Rank Models written by Madeleine Udell and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Principal components analysis categories.
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.
Multivariate Reduced Rank Regression
DOWNLOAD
Author : Gregory C. Reinsel
language : en
Publisher: Springer Nature
Release Date : 2022-11-30
Multivariate Reduced Rank Regression written by Gregory C. Reinsel and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-30 with Mathematics categories.
This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed. This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.
Low Rank Models In Visual Analysis
DOWNLOAD
Author : Zhouchen Lin
language : en
Publisher: Academic Press
Release Date : 2017-06-06
Low Rank Models In Visual Analysis written by Zhouchen Lin and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-06 with Computers categories.
Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. - Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications - Provides a full and clear explanation of the theory behind the models - Includes detailed proofs in the appendices
Ultra Dense Networks
DOWNLOAD
Author : Haijun Zhang
language : en
Publisher: Cambridge University Press
Release Date : 2020-11-26
Ultra Dense Networks written by Haijun Zhang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Computers categories.
Understand the theory, key technologies and applications of UDNs with this authoritative survey.
Probabilistic Machine Learning
DOWNLOAD
Author : Kevin P. Murphy
language : en
Publisher: MIT Press
Release Date : 2023-08-15
Probabilistic Machine Learning written by Kevin P. Murphy and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-15 with Computers categories.
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. Covers generation of high dimensional outputs, such as images, text, and graphs Discusses methods for discovering insights about data, based on latent variable models Considers training and testing under different distributions Explores how to use probabilistic models and inference for causal inference and decision making Features online Python code accompaniment
Nordic Artificial Intelligence Research And Development
DOWNLOAD
Author : Evi Zouganeli
language : en
Publisher: Springer Nature
Release Date : 2023-02-01
Nordic Artificial Intelligence Research And Development written by Evi Zouganeli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-01 with Computers categories.
This book constitutes the refereed proceedings of the 4th Symposium of the Norwegian AI Society, NAIS 2022, held in Oslo, Norway, during May 31–June 1, 2022. The 11 full papers included in this book were carefully reviewed and selected from 17 submissions. They were organized in topical sections as follows: robotics and intelligent systems; ai in cyber and digital sphere; ai in biological applications and medicine; and towards new ai methods. This is an open access book.
Optimization Discrete Mathematics And Applications To Data Sciences
DOWNLOAD
Author : Ashkan Nikeghbali
language : en
Publisher: Springer Nature
Release Date : 2025-01-08
Optimization Discrete Mathematics And Applications To Data Sciences written by Ashkan Nikeghbali and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-08 with Mathematics categories.
This book delves into the dynamic intersection of optimization and discrete mathematics, offering a comprehensive exploration of their applications in data sciences. Through a collection of high-quality papers, readers will gain insights into cutting-edge research and methodologies that address complex problems across a wide array of topics. The chapters cover an impressive range of subjects, including advances in the study of polynomials, combinatorial identities, and global optimization algorithms. Readers will encounter innovative approaches to predictive models for non-performing loans, rainbow greedy matching algorithms, and the cost of detection in interaction testing. The book also examines critical issues such as demand aggregation, mid-term energy planning, and minimum-cost energy flow. Contributions from expert authors provide a deep dive into multilevel low-rank matrices, the protection of medical image authenticity, and the mathematical intricacies of the Braess paradox. This volume invites readers to explore diverse perspectives and theoretical insights that are both practical and forward-thinking. This publication is an invaluable resource for graduate students and advanced researchers in the fields of optimization and discrete mathematics. It is particularly beneficial for those interested in their applications within data sciences. Academics across these disciplines will find the book's content relevant to their work, while practitioners seeking to apply these concepts in industry will appreciate its practical case studies. Whether you are a scholar or a professional, this book offers a wealth of knowledge that bridges theory with real-world applications.
Machine Learning At Scale With H2o
DOWNLOAD
Author : Gregory Keys
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-07-29
Machine Learning At Scale With H2o written by Gregory Keys and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-07-29 with Computers categories.
Build predictive models using large data volumes and deploy them to production using cutting-edge techniques Key Features • Build highly accurate state-of-the-art machine learning models against large-scale data • Deploy models for batch, real-time, and streaming data in a wide variety of target production systems • Explore all the new features of the H2O AI Cloud end-to-end machine learning platform Book Description H2O is an open source, fast, and scalable machine learning framework that allows you to build models using big data and then easily productionalize them in diverse enterprise environments. Machine Learning at Scale with H2O begins with an overview of the challenges faced in building machine learning models on large enterprise systems, and then addresses how H2O helps you to overcome them. You'll start by exploring H2O's in-memory distributed architecture and find out how it enables you to build highly accurate and explainable models on massive datasets using your favorite ML algorithms, language, and IDE. You'll also get to grips with the seamless integration of H2O model building and deployment with Spark using H2O Sparkling Water. You'll then learn how to easily deploy models with H2O MOJO. Next, the book shows you how H2O Enterprise Steam handles admin configurations and user management, and then helps you to identify different stakeholder perspectives that a data scientist must understand in order to succeed in an enterprise setting. Finally, you'll be introduced to the H2O AI Cloud platform and explore the entire machine learning life cycle using multiple advanced AI capabilities. By the end of this book, you'll be able to build and deploy advanced, state-of-the-art machine learning models for your business needs. What you will learn • Build and deploy machine learning models using H2O • Explore advanced model-building techniques • Integrate Spark and H2O code using H2O Sparkling Water • Launch self-service model building environments • Deploy H2O models in a variety of target systems and scoring contexts • Expand your machine learning capabilities on the H2O AI Cloud Who this book is for This book is for data scientists and machine learning engineers who want to gain hands-on machine learning experience by building and deploying state-of-the-art models with advanced techniques using H2O technology. An understanding of the data science process and experience in Python programming is recommended. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.