Generative Adversarial Networks With Industrial Use Cases

DOWNLOAD
Download Generative Adversarial Networks With Industrial Use Cases PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generative Adversarial Networks With Industrial Use Cases book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Generative Adversarial Networks With Industrial Use Cases
DOWNLOAD
Author : Navin K Manaswi
language : en
Publisher: BPB Publications
Release Date : 2020-03-04
Generative Adversarial Networks With Industrial Use Cases written by Navin K Manaswi and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-04 with Computers categories.
Best Book on GAN Ê DESCRIPTIONÊ This book aims at simplifying GAN for everyone. This book is very important for machine learning engineers, researchers, students, professors, and professionals. Universities and online course instructors will find this book very interesting for teaching advanced deep learning, specially Generative Adversarial Networks(GAN). Industry professionals, coders, and data scientists can learn GAN from scratch. They can learn how to build GAN codes for industrial applications for Healthcare, Retail, HRTech, EduTech, Telecom, Media, and Entertainment. Mathematics of GAN is discussed and illustrated. KL divergence and other parts of GAN are illustrated and discussed mathematically. This book teaches how to build codes for pix2pix GAN, DCGAN, CGAN, styleGAN, cycleGAN, and many other GAN. Machine Learning and Deep Learning Researchers will learn GAN in the shortest possible time with the help of this book. Ê KEY FEATURESÊÊ - Understanding the deep learning landscape and GANÕs relevance - Learning basics of GAN - Learning how to build GAN from scratch - Understanding mathematics and limitations of GAN - Understanding GAN applications for Retail, Healthcare, Telecom, Media and EduTech - Understanding the important GAN papers such as pix2pixGAN, styleGAN, cycleGAN, DCGAN - Learning how to build GAN code for industrial applications - Understanding the difference between varieties of GAN WHAT WILL YOU LEARNÊ _ÊMachine Learning Researchers would be comfortable in building advanced deep learning codes for Industrial applications _ÊData Scientists would start solving very complex problems in deep learning _ÊStudents would be ready to join an industry with these skills _ÊAverage data engineers and scientists would be able to develop complex GAN codes to solve the toughest problems in computer vision Ê WHO THIS BOOK IS FORÊÊ This book is perfect for machine learning engineers, data scientists, data engineers, deep learning professionals, and computer vision researchers. This book is also very useful for medical imaging professionals, autonomous vehicles professionals, retail fashion professionals, media & entertainment professionals, edutech and HRtech professionals. Professors and Students working in machine learning, deep learning, computer vision, and industrial applications would find this book extremely useful. TABLE OF CONTENTS 1. Basics of GAN 2. Introduction 3. Problem with GANÊ 4. Famous Types Of GANs
Generative Adversarial Networks For Image To Image Translation
DOWNLOAD
Author : Arun Solanki
language : en
Publisher: Academic Press
Release Date : 2021-06-22
Generative Adversarial Networks For Image To Image Translation written by Arun Solanki and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-22 with Science categories.
Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications
Gans In Action
DOWNLOAD
Author : Vladimir Bok
language : en
Publisher: Simon and Schuster
Release Date : 2019-09-09
Gans In Action written by Vladimir Bok and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Generative Adversarial Networks Projects
DOWNLOAD
Author : Kailash Ahirwar
language : en
Publisher: Packt Publishing
Release Date : 2018-10-31
Generative Adversarial Networks Projects written by Kailash Ahirwar and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.
Explore various Generative Adversarial Network architectures using the Python ecosystem Key Features Use different datasets to build advanced projects in the Generative Adversarial Network domain Implement projects ranging from generating 3D shapes to a face aging application Explore the power of GANs to contribute in open source research and projects Book Description Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you'll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learn Train a network on the 3D ShapeNet dataset to generate realistic shapes Generate anime characters using the Keras implementation of DCGAN Implement an SRGAN network to generate high-resolution images Train Age-cGAN on Wiki-Cropped images to improve face verification Use Conditional GANs for image-to-image translation Understand the generator and discriminator implementations of StackGAN in Keras Who this book is for If you're a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.
Generative Adversarial Networks Cookbook
DOWNLOAD
Author : Josh Kalin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-31
Generative Adversarial Networks Cookbook written by Josh Kalin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Computers categories.
Simplify next-generation deep learning by implementing powerful generative models using Python, TensorFlow and Keras Key FeaturesUnderstand the common architecture of different types of GANsTrain, optimize, and deploy GAN applications using TensorFlow and KerasBuild generative models with real-world data sets, including 2D and 3D dataBook Description Developing Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand. This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use. By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away. What you will learnStructure a GAN architecture in pseudocodeUnderstand the common architecture for each of the GAN models you will buildImplement different GAN architectures in TensorFlow and KerasUse different datasets to enable neural network functionality in GAN modelsCombine different GAN models and learn how to fine-tune themProduce a model that can take 2D images and produce 3D modelsDevelop a GAN to do style transfer with Pix2PixWho this book is for This book is for data scientists, machine learning developers, and deep learning practitioners looking for a quick reference to tackle challenges and tasks in the GAN domain. Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book.
Generative Adversarial Networks Projects
DOWNLOAD
Author : Kailash Ahirwar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31
Generative Adversarial Networks Projects written by Kailash Ahirwar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Mathematics categories.
Explore various Generative Adversarial Network architectures using the Python ecosystem Key FeaturesUse different datasets to build advanced projects in the Generative Adversarial Network domainImplement projects ranging from generating 3D shapes to a face aging applicationExplore the power of GANs to contribute in open source research and projectsBook Description Generative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you’ll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learnTrain a network on the 3D ShapeNet dataset to generate realistic shapesGenerate anime characters using the Keras implementation of DCGANImplement an SRGAN network to generate high-resolution imagesTrain Age-cGAN on Wiki-Cropped images to improve face verificationUse Conditional GANs for image-to-image translationUnderstand the generator and discriminator implementations of StackGAN in KerasWho this book is for If you’re a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.
Generative Adversarial Networks With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-07-11
Generative Adversarial Networks With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-11 with Computers categories.
Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.
Hands On Generative Adversarial Networks With Pytorch 1 X
DOWNLOAD
Author : John Hany
language : en
Publisher:
Release Date : 2019-12-12
Hands On Generative Adversarial Networks With Pytorch 1 X written by John Hany and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.
Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key Features Implement GAN architectures to generate images, text, audio, 3D models, and more Understand how GANs work and become an active contributor in the open source community Learn how to generate photo-realistic images based on text descriptions Book Description With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learn Implement PyTorch's latest features to ensure efficient model designing Get to grips with the working mechanisms of GAN models Perform style transfer between unpaired image collections with CycleGAN Build and train 3D-GANs to generate a point cloud of 3D objects Create a range of GAN models to perform various image synthesis operations Use SEGAN to suppress noise and improve the quality of speech audio Who this book is for This GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You'll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.
Generative Deep Learning
DOWNLOAD
Author : David Foster
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-28
Generative Deep Learning written by David Foster and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Computers categories.
Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN
Generative Artificial Intelligence Ai Approaches For Industrial Applications
DOWNLOAD
Author : Narasimha Rao Vajjhala
language : en
Publisher: Springer Nature
Release Date : 2025-02-03
Generative Artificial Intelligence Ai Approaches For Industrial Applications written by Narasimha Rao Vajjhala and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-03 with Computers categories.
"Generative Artificial Intelligence (AI) Approaches for Industrial Applications" explores the transformative potential of Generative AI technologies across various industries. With contributions from international scholars and experts, this book provides a comprehensive overview of the latest trends, mathematical foundations, and practical applications of Generative AI models. Key sections examine the fundamental concepts of Generative AI, including Generative Adversarial Networks (GANs) and their ethical and security considerations. Special attention is given to the revolutionary impact of Generative AI in healthcare technologies, clinical decision-making, and predictive maintenance within the manufacturing sector. Additionally, the role of Generative AI in FinTech, particularly in redefining business models and enhancing digital security, is thoroughly examined. This book features cutting-edge research on text summarization, age progression using GANs, and integrating AI with regulatory practices. This book is a vital resource for academics, professionals, and practitioners bridging the gap between theoretical AI frameworks and their real-world industrial applications, offering insights into how Generative AI is shaping the future of industries worldwide.