[PDF] Genetic Algorithms - eBooks Review

Genetic Algorithms


Genetic Algorithms
DOWNLOAD

Download Genetic Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Genetic Algorithms


An Introduction To Genetic Algorithms
DOWNLOAD
Author : Melanie Mitchell
language : en
Publisher: MIT Press
Release Date : 1998-03-02

An Introduction To Genetic Algorithms written by Melanie Mitchell and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-03-02 with Computers categories.


Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.



Introduction To Genetic Algorithms


Introduction To Genetic Algorithms
DOWNLOAD
Author : S.N. Sivanandam
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-24

Introduction To Genetic Algorithms written by S.N. Sivanandam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-24 with Technology & Engineering categories.


Theoriginofevolutionaryalgorithmswasanattempttomimicsomeoftheprocesses taking place in natural evolution. Although the details of biological evolution are not completely understood (even nowadays), there exist some points supported by strong experimental evidence: • Evolution is a process operating over chromosomes rather than over organisms. The former are organic tools encoding the structure of a living being, i.e., a cr- ture is “built” decoding a set of chromosomes. • Natural selection is the mechanism that relates chromosomes with the ef ciency of the entity they represent, thus allowing that ef cient organism which is we- adapted to the environment to reproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage. There exists a large number of reproductive mechanisms in Nature. Most common ones are mutation (that causes the chromosomes of offspring to be different to those of the parents) and recombination (that combines the chromosomes of the parents to produce the offspring). Based upon the features above, the three mentioned models of evolutionary c- puting were independently (and almost simultaneously) developed.



Genetic Algorithms


Genetic Algorithms
DOWNLOAD
Author : David E. Goldberg
language : en
Publisher: Pearson Education India
Release Date : 2013-02

Genetic Algorithms written by David E. Goldberg and has been published by Pearson Education India this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02 with Computers categories.


This book, suitable for both course work and self-study, brings together for the first time, in an informal, tutorial fashion, the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields: programmers, scientists, engineers, mathematicians, statisticians and management scientists will all find interesting possibilities here. Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. Chapter concludes with exercises and computer assignments. No prior knowledge of Gas or genetics is assumed.



Introduction To Evolutionary Computing


Introduction To Evolutionary Computing
DOWNLOAD
Author : A.E. Eiben
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06

Introduction To Evolutionary Computing written by A.E. Eiben and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Computers categories.


The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.



Genetic Algorithms Data Structures Evolution Programs


Genetic Algorithms Data Structures Evolution Programs
DOWNLOAD
Author : Zbigniew Michalewicz
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Genetic Algorithms Data Structures Evolution Programs written by Zbigniew Michalewicz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.


Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques has been growing in the last decade, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. It is aimed at researchers, practitioners, and graduate students in computer science and artificial intelligence, operations research, and engineering. This second edition includes several new sections and many references to recent developments. A simple example of genetic code and an index are also added. Writing an evolution program for a given problem should be an enjoyable experience - this book may serve as a guide to this task.



Genetic Algorithms And Genetic Programming


Genetic Algorithms And Genetic Programming
DOWNLOAD
Author : Michael Affenzeller
language : en
Publisher: CRC Press
Release Date : 2009-04-09

Genetic Algorithms And Genetic Programming written by Michael Affenzeller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-09 with Computers categories.


Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al



Parallel Genetic Algorithms


Parallel Genetic Algorithms
DOWNLOAD
Author : Gabriel Luque
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-15

Parallel Genetic Algorithms written by Gabriel Luque and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-15 with Computers categories.


This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.



Genetic Algorithms In Applications


Genetic Algorithms In Applications
DOWNLOAD
Author : Rustem Popa
language : en
Publisher: BoD – Books on Demand
Release Date : 2012-03-21

Genetic Algorithms In Applications written by Rustem Popa and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-21 with Computers categories.


Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.



Hands On Genetic Algorithms With Python


Hands On Genetic Algorithms With Python
DOWNLOAD
Author : Eyal Wirsansky
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31

Hands On Genetic Algorithms With Python written by Eyal Wirsansky and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.


Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.



Genetic Algorithms And Engineering Design


Genetic Algorithms And Engineering Design
DOWNLOAD
Author : Mitsuo Gen
language : en
Publisher: John Wiley & Sons
Release Date : 1997-01-21

Genetic Algorithms And Engineering Design written by Mitsuo Gen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-21 with Technology & Engineering categories.


The last few years have seen important advances in the use ofgenetic algorithms to address challenging optimization problems inindustrial engineering. Genetic Algorithms and Engineering Designis the only book to cover the most recent technologies and theirapplication to manufacturing, presenting a comprehensive and fullyup-to-date treatment of genetic algorithms in industrialengineering and operations research. Beginning with a tutorial on genetic algorithm fundamentals andtheir use in solving constrained and combinatorial optimizationproblems, the book applies these techniques to problems in specificareas--sequencing, scheduling and production plans, transportationand vehicle routing, facility layout, location-allocation, andmore. Each topic features a clearly written problem description,mathematical model, and summary of conventional heuristicalgorithms. All algorithms are explained in intuitive, rather thanhighly-technical, language and are reinforced with illustrativefigures and numerical examples. Written by two internationally acknowledged experts in the field,Genetic Algorithms and Engineering Design features originalmaterial on the foundation and application of genetic algorithms,and also standardizes the terms and symbols used in othersources--making this complex subject truly accessible to thebeginner as well as to the more advanced reader. Ideal for both self-study and classroom use, this self-containedreference provides indispensable state-of-the-art guidance toprofessionals and students working in industrial engineering,management science, operations research, computer science, andartificial intelligence. The only comprehensive, state-of-the-arttreatment available on the use of genetic algorithms in industrialengineering and operations research . . . Written by internationally recognized experts in the field ofgenetic algorithms and artificial intelligence, Genetic Algorithmsand Engineering Design provides total coverage of currenttechnologies and their application to manufacturing systems.Incorporating original material on the foundation and applicationof genetic algorithms, this unique resource also standardizes theterms and symbols used in other sources--making this complexsubject truly accessible to students as well as experiencedprofessionals. Designed for clarity and ease of use, thisself-contained reference: * Provides a comprehensive survey of selection strategies, penaltytechniques, and genetic operators used for constrained andcombinatorial optimization problems * Shows how to use genetic algorithms to make production schedules,solve facility/location problems, make transportation/vehiclerouting plans, enhance system reliability, and much more * Contains detailed numerical examples, plus more than 160auxiliary figures to make solution procedures transparent andunderstandable