Genetic Algorithms And Fuzzy Multiobjective Optimization

DOWNLOAD
Download Genetic Algorithms And Fuzzy Multiobjective Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Algorithms And Fuzzy Multiobjective Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Genetic Algorithms And Fuzzy Multiobjective Optimization
DOWNLOAD
Author : Masatoshi Sakawa
language : en
Publisher: Springer
Release Date : 2012-11-01
Genetic Algorithms And Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-01 with Mathematics categories.
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Genetic Algorithms And Fuzzy Multiobjective Optimization
DOWNLOAD
Author : Masatoshi Sakawa
language : en
Publisher: Springer Science & Business Media
Release Date : 2002
Genetic Algorithms And Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Business & Economics categories.
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Genetic Algorithms And Fuzzy Multiobjective Optimization
DOWNLOAD
Author : Masatoshi Sakawa
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Genetic Algorithms And Fuzzy Multiobjective Optimization written by Masatoshi Sakawa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Genetic Algorithms And Engineering Optimization
DOWNLOAD
Author : Mitsuo Gen
language : en
Publisher: John Wiley & Sons
Release Date : 1999-12-28
Genetic Algorithms And Engineering Optimization written by Mitsuo Gen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-28 with Technology & Engineering categories.
A comprehensive guide to a powerful new analytical tool by two of its foremost innovators The past decade has witnessed many exciting advances in the use of genetic algorithms (GAs) to solve optimization problems in everything from product design to scheduling and client/server networking. Aided by GAs, analysts and designers now routinely evolve solutions to complex combinatorial and multiobjective optimization problems with an ease and rapidity unthinkable withconventional methods. Despite the continued growth and refinement of this powerful analytical tool, there continues to be a lack of up-to-date guides to contemporary GA optimization principles and practices. Written by two of the world's leading experts in the field, this book fills that gap in the literature. Taking an intuitive approach, Mitsuo Gen and Runwei Cheng employ numerous illustrations and real-world examples to help readers gain a thorough understanding of basic GA concepts-including encoding, adaptation, and genetic optimizations-and to show how GAs can be used to solve an array of constrained, combinatorial, multiobjective, and fuzzy optimization problems. Focusing on problems commonly encountered in industry-especially in manufacturing-Professors Gen and Cheng provide in-depth coverage of advanced GA techniques for: * Reliability design * Manufacturing cell design * Scheduling * Advanced transportation problems * Network design and routing Genetic Algorithms and Engineering Optimization is an indispensable working resource for industrial engineers and designers, as well as systems analysts, operations researchers, and management scientists working in manufacturing and related industries. It also makes an excellent primary or supplementary text for advanced courses in industrial engineering, management science, operations research, computer science, and artificial intelligence.
Multiobjective Optimization Algorithms For Bioinformatics
DOWNLOAD
Author : Anirban Mukhopadhyay
language : en
Publisher: Springer Nature
Release Date : 2024-05-28
Multiobjective Optimization Algorithms For Bioinformatics written by Anirban Mukhopadhyay and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-28 with Computers categories.
This book provides an updated and in-depth introduction to the application of multiobjective optimization techniques in bioinformatics. In particular, it presents multiobjective solutions to a range of complex real-world bioinformatics problems. The authors first provide a comprehensive yet concise and self-contained introduction to relevant preliminary methodical constructions such as genetic algorithms, multiobjective optimization, data mining and several challenges in the bioinformatics domain. This is followed by several systematic applications of these techniques to real-world bioinformatics problems in the areas of gene expression and network biology. The book also features detailed theoretical and mathematical notes to facilitate reader comprehension. The book offers a valuable asset for a broad range of readers – from undergraduate to postgraduate, and as a textbook or reference work. Researchers and professionals can use the book not only to enrich their knowledge of multiobjective optimization and bioinformatics, but also as a comprehensive reference guide to applying and devising novel methods in bioinformatics and related domains.
Multiobjective Optimization
DOWNLOAD
Author : Jürgen Branke
language : en
Publisher: Springer
Release Date : 2008-10-18
Multiobjective Optimization written by Jürgen Branke and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-18 with Computers categories.
Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Multi Objective Optimization Using Evolutionary Algorithms
DOWNLOAD
Author : Kalyanmoy Deb
language : en
Publisher: John Wiley & Sons
Release Date : 2001-07-05
Multi Objective Optimization Using Evolutionary Algorithms written by Kalyanmoy Deb and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-05 with Mathematics categories.
Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run. Comprehensive coverage of this growing area of research Carefully introduces each algorithm with examples and in-depth discussion Includes many applications to real-world problems, including engineering design and scheduling Includes discussion of advanced topics and future research Can be used as a course text or for self-study Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.
Evolutionary Algorithms For Solving Multi Objective Problems
DOWNLOAD
Author : Carlos Coello Coello
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-09-18
Evolutionary Algorithms For Solving Multi Objective Problems written by Carlos Coello Coello and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-18 with Computers categories.
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Multiobjective Optimization
DOWNLOAD
Author : Yann Collette
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Multiobjective Optimization written by Yann Collette and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
From whatever domain they come, engineers are faced daily with optimization problems that requires conflicting objectives to be met. This monograph systematically presents several multiobjective optimization methods accompanied by many analytical examples. Each method or definition is clarified, when possible, by an illustration. Multiobjective Optimization treats not only engineering problems, e.g in mechanics, but also problems arising in operations research and management. It explains how to choose the most suitable method to solve a given problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids. This book is intended for engineering students, and those in applied mathematics, algorithmics, economics (operational research), production management, and computer scientists.
Network Models And Optimization
DOWNLOAD
Author : Mitsuo Gen
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-07-10
Network Models And Optimization written by Mitsuo Gen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-10 with Technology & Engineering categories.
Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.