Genetic Algorithms And Investment Strategies

DOWNLOAD
Download Genetic Algorithms And Investment Strategies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Algorithms And Investment Strategies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Genetic Algorithms And Investment Strategies
DOWNLOAD
Author : Richard J. Bauer
language : en
Publisher: John Wiley & Sons
Release Date : 1994-03-31
Genetic Algorithms And Investment Strategies written by Richard J. Bauer and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-03-31 with Business & Economics categories.
When you combine nature's efficiency and the computer's speed, thefinancial possibilities are almost limitless. Today's traders andinvestment analysts require faster, sleeker weaponry in today'sruthless financial marketplace. Battles are now waged at computerspeed, with skirmishes lasting not days or weeks, but mere hours.In his series of influential articles, Richard Bauer has shown whythese professionals must add new computerized decision-making toolsto their arsenal if they are to succeed. In Genetic Algorithms andInvestment Strategies, he uniquely focuses on the most powerfulweapon of all, revealing how the speed, power, and flexibility ofGAs can help them consistently devise winning investmentstrategies. The only book to demonstrate how GAs can workeffectively in the world of finance, it first describes thebiological and historical bases of GAs as well as othercomputerized approaches such as neural networks and chaos theory.It goes on to compare their uses, advantages, and overallsuperiority of GAs. In subsequently presenting a basic optimizationproblem, Genetic Algorithms and Investment Strategies outlines theessential steps involved in using a GA and shows how it mimicsnature's evolutionary process by moving quickly toward anear-optimal solution. Introduced to advanced variations ofessential GA procedures, readers soon learn how GAs can be usedto: * Solve large, complex problems and smaller sets of problems * Serve the needs of traders with widely different investmentphilosophies * Develop sound market timing trading rules in the stock and bondmarkets * Select profitable individual stocks and bonds * Devise powerful portfolio management systems Complete with information on relevant software programs, a glossaryof GA terminology, and an extensive bibliography coveringcomputerized approaches and market timing, Genetic Algorithms andInvestment Strategies unveils in clear, nontechnical language aremarkably efficient strategic decision-making process that, whenimaginatively used, enables traders and investment analysts to reapsignificant financial rewards.
Investment Strategies Optimization Based On A Sax Ga Methodology
DOWNLOAD
Author : António M.L. Canelas
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-28
Investment Strategies Optimization Based On A Sax Ga Methodology written by António M.L. Canelas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-28 with Computers categories.
This book presents a new computational finance approach combining a Symbolic Aggregate approximation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. The proposed approach considers several different chromosomes structures in order to achieve better results on the trading platform The methodology presented in this book has great potential on investment markets.
Genetic Algorithms And Applications For Stock Trading Optimization
DOWNLOAD
Author : Kapoor, Vivek
language : en
Publisher: IGI Global
Release Date : 2021-06-25
Genetic Algorithms And Applications For Stock Trading Optimization written by Kapoor, Vivek and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-25 with Computers categories.
Genetic algorithms (GAs) are based on Darwin’s theory of natural selection and survival of the fittest. They are designed to competently look for solutions to big and multifaceted problems. Genetic algorithms are wide groups of interrelated events with divided steps. Each step has dissimilarities, which leads to a broad range of connected actions. Genetic algorithms are used to improve trading systems, such as to optimize a trading rule or parameters of a predefined multiple indicator market trading system. Genetic Algorithms and Applications for Stock Trading Optimization is a complete reference source to genetic algorithms that explains how they might be used to find trading strategies, as well as their use in search and optimization. It covers the functions of genetic algorithms internally, computer implementation of pseudo-code of genetic algorithms in C++, technical analysis for stock market forecasting, and research outcomes that apply in the stock trading system. This book is ideal for computer scientists, IT specialists, data scientists, managers, executives, professionals, academicians, researchers, graduate-level programs, research programs, and post-graduate students of engineering and science.
Genetic Algorithms And Genetic Programming In Computational Finance
DOWNLOAD
Author : Shu-Heng Chen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Genetic Algorithms And Genetic Programming In Computational Finance written by Shu-Heng Chen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.
Use Of Genetic Algorithms For Optimal Investment Strategies
DOWNLOAD
Author : Fan Zhang
language : en
Publisher:
Release Date : 2013
Use Of Genetic Algorithms For Optimal Investment Strategies written by Fan Zhang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Genetic algorithms categories.
In this project, a genetic algorithm (GA) is used in the development of investment strategies to decide the optimum asset allocations that back up a portfolio of term insurance contracts and the re-balancing strategy to respond to the changing financial markets, such as change in interest rates and mortality experience. The objective function used as the target to be maximized in GA allows us to accommodate three objectives that should be of interest to the management in insurance companies. The three objectives under consideration are maximizing the total value of wealth at the end of the period, minimizing the variance of the total value of the wealth across the simulated interest rate scenarios and achieving consistent returns on the portfolio from year to year. One objective may be in conflict with another, and GA tries to find a solution, among the large searching space of all the solutions, that favors a particular objective as specified by the user while not worsening other objectives too much. Duration matching, a popular approach to manage risks underlying the traditional life insurance portfolios, is used as a benchmark to examine the effectiveness of the strategies obtained through the use of genetic algorithms. Experiments are conducted to compare the performance of the investment strategy proposed by the genetic algorithm to the duration matching strategy in terms of the different objectives under the testing scenarios. The results from the experiments successfully illustrate that with the help of GA, we are able to find a strategy very similar to the strategy from duration matching. We are also able to find other strategies that could outperform duration matching in terms of some of the desired objectives and are robust in the tested changing environment of interest rate and mortality.
Trading On The Edge
DOWNLOAD
Author : Guido J. Deboeck
language : en
Publisher: John Wiley & Sons
Release Date : 1994-04-18
Trading On The Edge written by Guido J. Deboeck and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-04-18 with Business & Economics categories.
Experts from the world's major financial institutions contributed to this work and have already used the newest technologies. Gives proven strategies for using neural networks, algorithms, fuzzy logic and nonlinear data analysis techniques to enhance profitability. The latest analytical breakthroughs, the impact on modern finance theory and practice, including the best ways for profitably applying them to any trading and portfolio management system, are all covered.
Introduction To Genetic Algorithms
DOWNLOAD
Author : S.N. Sivanandam
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-24
Introduction To Genetic Algorithms written by S.N. Sivanandam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-24 with Technology & Engineering categories.
Theoriginofevolutionaryalgorithmswasanattempttomimicsomeoftheprocesses taking place in natural evolution. Although the details of biological evolution are not completely understood (even nowadays), there exist some points supported by strong experimental evidence: • Evolution is a process operating over chromosomes rather than over organisms. The former are organic tools encoding the structure of a living being, i.e., a cr- ture is “built” decoding a set of chromosomes. • Natural selection is the mechanism that relates chromosomes with the ef ciency of the entity they represent, thus allowing that ef cient organism which is we- adapted to the environment to reproduce more often than those which are not. • The evolutionary process takes place during the reproduction stage. There exists a large number of reproductive mechanisms in Nature. Most common ones are mutation (that causes the chromosomes of offspring to be different to those of the parents) and recombination (that combines the chromosomes of the parents to produce the offspring). Based upon the features above, the three mentioned models of evolutionary c- puting were independently (and almost simultaneously) developed.
Genetic Algorithms And Engineering Design
DOWNLOAD
Author : Mitsuo Gen
language : en
Publisher: John Wiley & Sons
Release Date : 1997-01-21
Genetic Algorithms And Engineering Design written by Mitsuo Gen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-21 with Technology & Engineering categories.
The last few years have seen important advances in the use ofgenetic algorithms to address challenging optimization problems inindustrial engineering. Genetic Algorithms and Engineering Designis the only book to cover the most recent technologies and theirapplication to manufacturing, presenting a comprehensive and fullyup-to-date treatment of genetic algorithms in industrialengineering and operations research. Beginning with a tutorial on genetic algorithm fundamentals andtheir use in solving constrained and combinatorial optimizationproblems, the book applies these techniques to problems in specificareas--sequencing, scheduling and production plans, transportationand vehicle routing, facility layout, location-allocation, andmore. Each topic features a clearly written problem description,mathematical model, and summary of conventional heuristicalgorithms. All algorithms are explained in intuitive, rather thanhighly-technical, language and are reinforced with illustrativefigures and numerical examples. Written by two internationally acknowledged experts in the field,Genetic Algorithms and Engineering Design features originalmaterial on the foundation and application of genetic algorithms,and also standardizes the terms and symbols used in othersources--making this complex subject truly accessible to thebeginner as well as to the more advanced reader. Ideal for both self-study and classroom use, this self-containedreference provides indispensable state-of-the-art guidance toprofessionals and students working in industrial engineering,management science, operations research, computer science, andartificial intelligence. The only comprehensive, state-of-the-arttreatment available on the use of genetic algorithms in industrialengineering and operations research . . . Written by internationally recognized experts in the field ofgenetic algorithms and artificial intelligence, Genetic Algorithmsand Engineering Design provides total coverage of currenttechnologies and their application to manufacturing systems.Incorporating original material on the foundation and applicationof genetic algorithms, this unique resource also standardizes theterms and symbols used in other sources--making this complexsubject truly accessible to students as well as experiencedprofessionals. Designed for clarity and ease of use, thisself-contained reference: * Provides a comprehensive survey of selection strategies, penaltytechniques, and genetic operators used for constrained andcombinatorial optimization problems * Shows how to use genetic algorithms to make production schedules,solve facility/location problems, make transportation/vehiclerouting plans, enhance system reliability, and much more * Contains detailed numerical examples, plus more than 160auxiliary figures to make solution procedures transparent andunderstandable
Routledge Library Editions Financial Markets
DOWNLOAD
Author : Various
language : en
Publisher: Routledge
Release Date : 2021-07-09
Routledge Library Editions Financial Markets written by Various and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-09 with Business & Economics categories.
The volumes in this set, originally published between 1970 and 1996, draw together research by leading academics in the area of economic and financial markets, and provide a rigorous examination of related key issues. The volumes examine the stock exchange, capital cities as financial centres, international capital, the financial system, bond duration, security market indices and artificial intelligence applications on Wall Street, whilst also exploring the general principles and practices of financial markets in various countries. This set will be of particular interest to students of economics and finance respectively.
Artificial Intelligence For Big Data
DOWNLOAD
Author : Anand Deshpande
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-22
Artificial Intelligence For Big Data written by Anand Deshpande and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-22 with Computers categories.
Build next-generation Artificial Intelligence systems with Java Key Features Implement AI techniques to build smart applications using Deeplearning4j Perform big data analytics to derive quality insights using Spark MLlib Create self-learning systems using neural networks, NLP, and reinforcement learning Book Description In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, Artificial Intelligence closes the gap by moving past human limitations in order to analyze data. With the help of Artificial Intelligence for big data, you will learn to use Machine Learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of Machine and Deep Learning techniques to work on Genetic and Neuro-Fuzzy algorithms. In addition, you will explore how to develop Artificial Intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems. By the end of this book, you'll have learned how to implement various Artificial Intelligence algorithms for your big data systems and integrate them into your product offerings such as reinforcement learning, natural language processing, image recognition, genetic algorithms, and fuzzy logic systems. What you will learn Manage Artificial Intelligence techniques for big data with Java Build smart systems to analyze data for enhanced customer experience Learn to use Artificial Intelligence frameworks for big data Understand complex problems with algorithms and Neuro-Fuzzy systems Design stratagems to leverage data using Machine Learning process Apply Deep Learning techniques to prepare data for modeling Construct models that learn from data using open source tools Analyze big data problems using scalable Machine Learning algorithms Who this book is for This book is for you if you are a data scientist, big data professional, or novice who has basic knowledge of big data and wish to get proficiency in Artificial Intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.