[PDF] Genetic Algorithms And Machine Learning For Programmers - eBooks Review

Genetic Algorithms And Machine Learning For Programmers


Genetic Algorithms And Machine Learning For Programmers
DOWNLOAD

Download Genetic Algorithms And Machine Learning For Programmers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genetic Algorithms And Machine Learning For Programmers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Hands On Genetic Algorithms With Python


Hands On Genetic Algorithms With Python
DOWNLOAD
Author : Eyal Wirsansky
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31

Hands On Genetic Algorithms With Python written by Eyal Wirsansky and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.


Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.



Optimized Genetic Programming Applications Emerging Research And Opportunities


Optimized Genetic Programming Applications Emerging Research And Opportunities
DOWNLOAD
Author : Hrnjica, Bahrudin
language : en
Publisher: IGI Global
Release Date : 2018-07-06

Optimized Genetic Programming Applications Emerging Research And Opportunities written by Hrnjica, Bahrudin and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-06 with Medical categories.


Data is more valuable than ever in the twenty-first century, and tremendous amounts of data are being generated every second. With a fast-growing information industry, engineers are required to develop new tools and techniques that increase human capabilities of mining useful knowledge from the vast amounts of data. Optimized Genetic Programming Applications: Emerging Research and Opportunities is an essential reference source that explores the concept of genetic programming and its role in managing engineering problems. It also examines genetic programming as a supervised machine learning technique, focusing on implementation and application. As a resource that details both the theoretical aspects and implementation of genetic programming, this book is a useful source for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.



Genetic Algorithms And Machine Learning For Programmers


Genetic Algorithms And Machine Learning For Programmers
DOWNLOAD
Author : Frances Buontempo
language : en
Publisher: The Pragmatic Programmers LLC
Release Date : 2019-01-23

Genetic Algorithms And Machine Learning For Programmers written by Frances Buontempo and has been published by The Pragmatic Programmers LLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-23 with Computers categories.


Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you. Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems. In this book, you will: Use heuristics and design fitness functions. Build genetic algorithms. Make nature-inspired swarms with ants, bees and particles. Create Monte Carlo simulations. Investigate cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection methods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters. Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon. What You Need: Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.



Classification And Learning Using Genetic Algorithms


Classification And Learning Using Genetic Algorithms
DOWNLOAD
Author : Sanghamitra Bandyopadhyay
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-17

Classification And Learning Using Genetic Algorithms written by Sanghamitra Bandyopadhyay and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-17 with Computers categories.


This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.



Advances In Genetic Programming


Advances In Genetic Programming
DOWNLOAD
Author : Kenneth E. Kinnear (Jr.)
language : en
Publisher: MIT Press
Release Date : 1994

Advances In Genetic Programming written by Kenneth E. Kinnear (Jr.) and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Computers categories.


Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.



Learning Genetic Algorithms With Python


Learning Genetic Algorithms With Python
DOWNLOAD
Author : Ivan Gridin
language : en
Publisher: BPB Publications
Release Date : 2021-02-13

Learning Genetic Algorithms With Python written by Ivan Gridin and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-13 with Computers categories.


Refuel your AI Models and ML applications with High-Quality Optimization and Search Solutions DESCRIPTION Genetic algorithms are one of the most straightforward and powerful techniques used in machine learning. This book ÔLearning Genetic Algorithms with PythonÕ guides the reader right from the basics of genetic algorithms to its real practical implementation in production environments.Ê Each of the chapters gives the reader an intuitive understanding of each concept. You will learn how to build a genetic algorithm from scratch and implement it in real-life problems. Covered with practical illustrated examples, you will learn to design and choose the best model architecture for the particular tasks. Cutting edge examples like radar and football manager problem statements, you will learn to solve high-dimensional big data challenges with ways of optimizing genetic algorithms. KEY FEATURESÊÊ _ Complete coverage on practical implementation of genetic algorithms. _ Intuitive explanations and visualizations supply theoretical concepts. _ Added examples and use-cases on the performance of genetic algorithms. _ Use of Python libraries and a niche coverage on the performance optimization of genetic algorithms. WHAT YOU WILL LEARNÊ _ Understand the mechanism of genetic algorithms using popular python libraries. _ Learn the principles and architecture of genetic algorithms. _ Apply and Solve planning, scheduling and analytics problems in Enterprise applications. _Ê Expert learning on prime concepts like Selection, Mutation and Crossover. WHO THIS BOOK IS FORÊÊ The book is for Data Science team, Analytics team, AI Engineers, ML Professionals who want to integrate genetic algorithms to refuel their ML and AI applications. No special expertise about machine learning is required although a basic knowledge of Python is expected. TABLE OF CONTENTS 1. Introduction 2. Genetic Algorithm Flow 3. Selection 4. Crossover 5. Mutation 6. Effectiveness 7. Parameter Tuning 8. Black-box Function 9. Combinatorial Optimization: Binary Gene Encoding 10. Combinatorial Optimization: Ordered Gene Encoding 11. Other Common Problems 12. Adaptive Genetic Algorithm 13. Improving Performance



Genetic Algorithms With Python


Genetic Algorithms With Python
DOWNLOAD
Author : Clinton Sheppard
language : en
Publisher:
Release Date : 2018-02-11

Genetic Algorithms With Python written by Clinton Sheppard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-11 with Genetic algorithms categories.


Get a hands-on introduction to machine learning with genetic algorithms using Python. Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. The step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise. Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction. Souce code: https: //github.com/handcraftsman/GeneticAlgorithmsWithPython



Genetic Algorithms Data Structures Evolution Programs


Genetic Algorithms Data Structures Evolution Programs
DOWNLOAD
Author : Zbigniew Michalewicz
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Genetic Algorithms Data Structures Evolution Programs written by Zbigniew Michalewicz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Computers categories.


Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques has been growing in the last decade, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. It is aimed at researchers, practitioners, and graduate students in computer science and artificial intelligence, operations research, and engineering. This second edition includes several new sections and many references to recent developments. A simple example of genetic code and an index are also added. Writing an evolution program for a given problem should be an enjoyable experience - this book may serve as a guide to this task.



Automated Design Of Machine Learning And Search Algorithms


Automated Design Of Machine Learning And Search Algorithms
DOWNLOAD
Author : Nelishia Pillay
language : en
Publisher: Springer Nature
Release Date : 2021-07-28

Automated Design Of Machine Learning And Search Algorithms written by Nelishia Pillay and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Computers categories.


This book presents recent advances in automated machine learning (AutoML) and automated algorithm design and indicates the future directions in this fast-developing area. Methods have been developed to automate the design of neural networks, heuristics and metaheuristics using techniques such as metaheuristics, statistical techniques, machine learning and hyper-heuristics. The book first defines the field of automated design, distinguishing it from the similar but different topics of automated algorithm configuration and automated algorithm selection. The chapters report on the current state of the art by experts in the field and include reviews of AutoML and automated design of search, theoretical analyses of automated algorithm design, automated design of control software for robot swarms, and overfitting as a benchmark and design tool. Also covered are automated generation of constructive and perturbative low-level heuristics, selection hyper-heuristics for automated design, automated design of deep-learning approaches using hyper-heuristics, genetic programming hyper-heuristics with transfer knowledge and automated design of classification algorithms. The book concludes by examining future research directions of this rapidly evolving field. The information presented here will especially interest researchers and practitioners in the fields of artificial intelligence, computational intelligence, evolutionary computation and optimisation.



An Introduction To Genetic Algorithms


An Introduction To Genetic Algorithms
DOWNLOAD
Author : Melanie Mitchell
language : en
Publisher: MIT Press
Release Date : 1998-03-02

An Introduction To Genetic Algorithms written by Melanie Mitchell and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-03-02 with Computers categories.


Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.