[PDF] Genomic Prediction Of Complex Traits - eBooks Review

Genomic Prediction Of Complex Traits


Genomic Prediction Of Complex Traits
DOWNLOAD

Download Genomic Prediction Of Complex Traits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Genomic Prediction Of Complex Traits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Genomic Prediction Of Complex Traits


Genomic Prediction Of Complex Traits
DOWNLOAD
Author : Nourollah Ahmadi
language : en
Publisher: Springer Nature
Release Date : 2022-04-22

Genomic Prediction Of Complex Traits written by Nourollah Ahmadi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-22 with Science categories.


This volume explores the conceptual framework and the practical issues related to genomic prediction of complex traits in human medicine and in animal and plant breeding. The book is organized into five parts. Part One reminds molecular genetics approaches intending to predict phenotypic variations. Part Two presents the principles of genomic prediction of complex traits, and reviews factors that affect its reliability. Part Three describes genomic prediction methods, including machine-learning approaches, accounting for different degree of biological complexity, and reviews the associated computer-packages. Part Four reports on emerging trends such as phenomic prediction and incorporation into genomic prediction models of “omics” data and crop growth models. Part Five is dedicated to lessons learned from cases studies in the fields of human health and animal and plant breeding, and to methods for analysis of the economic effectiveness of genomic prediction. Written in the highly successful Methods in Molecular Biology series format, the book provides theoretical bases and practical guidelines for an informed decision making of practitioners and identifies pertinent routes for further methodological researches. Cutting-edge and thorough, Complex Trait Predictions: Methods and Protocols is a valuable resource for scientists and researchers who are interested in learning more about this important and developing field. Chapters 3, 9, 13, 14, and 21 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Neural Networks In Finance And Investing


Neural Networks In Finance And Investing
DOWNLOAD
Author : Robert R. Trippi
language : en
Publisher: Irwin Professional Publishing
Release Date : 1996

Neural Networks In Finance And Investing written by Robert R. Trippi and has been published by Irwin Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Business & Economics categories.


This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.



Multivariate Statistical Machine Learning Methods For Genomic Prediction


Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14

Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.


This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.



Quantitative Genetics Genomics And Plant Breeding 2nd Edition


Quantitative Genetics Genomics And Plant Breeding 2nd Edition
DOWNLOAD
Author : Manjit S. Kang
language : en
Publisher: CABI
Release Date : 2020-04-01

Quantitative Genetics Genomics And Plant Breeding 2nd Edition written by Manjit S. Kang and has been published by CABI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-01 with Science categories.


This book presents state-of-the-art, authoritative chapters on contemporary issues in the broad areas of quantitative genetics, genomics and plant breeding. Section 1 (Chapters 2 to 12) emphasizes the application of genomics, and genome and epigenome editing techniques, in plant breeding; bioinformatics; quantitative trait loci mapping; and the latest approaches of examining and exploiting genotype-environment interactions. Section 2 (Chapters 13 to 20) represents the intersection of breeding, genetics and genomics. This section describes the use of cutting-edge molecular breeding and quantitative genetics techniques in wheat, rice, maize, root and tuber crops and pearl millet. Overall, the book focuses on using genomic information to help evaluate traits that can combat biotic/abiotic stresses, genome-wide association mapping, high-throughput genotyping/phenotyping, biofortification, use of big data, orphan crops, and gene editing techniques. The examples featured are taken from across crop science research and cover a wide geographical base.



Genomic Selection Lessons Learned And Perspectives


Genomic Selection Lessons Learned And Perspectives
DOWNLOAD
Author : Johannes W. R. Martini
language : en
Publisher: Frontiers Media SA
Release Date : 2022-09-15

Genomic Selection Lessons Learned And Perspectives written by Johannes W. R. Martini and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-15 with Science categories.


Genomic selection (GS) has been the most prominent topic in breeding science in the last two decades. The continued interest is promoted by its huge potential impact on the efficiency of breeding. Predicting a breeding value based on molecular markers and phenotypic values of relatives may be used to manipulate three parameters of the breeder's equation. First, the accuracy of the selection may be improved by predicting the genetic value more reliably when considering the records of relatives and the realized genomic relationship. Secondly, genotyping and predicting may be more cost effective than comprehensive phenotyping. Resources can instead be allocated to increasing population sizes and selection intensity. The third, probably most important factor, is time. As shown in dairy cattle breeding, reducing cycle time by crossing selection candidates earlier may have the strongest impact on selection gain. Many different prediction models have been used, and different ways of using predicted values in a breeding program have been explored. We would like to address the questions: i. How did GS change breeding schemes of different crops in the last 20 years? ii. What was the impact on realized selection gain? iii. What would be the best structure of a crop-specific breeding scheme to exploit the full potential of GS? iv. What is the potential of hybrid prediction, epistasis effect models, deep learning methods and other extensions of the standard prediction of additive effects? v. What are the long-term effects of GS? vi. Can predictive breeding approaches also be used to harness genetic resources from germplasm banks in a more efficient way to adapt current germplasm to new environmental challenges? This Research Topic welcomes submissions of Original Research papers, Opinions, Perspectives, Reviews, and Mini-Reviews related to these themes: 1. Genomic selection: statistical methodology 2. The (optimal) use of GS in breeding schemes 3. Practical experiences with GS (selection gain, long-term effects, negative side effects) 4. Predictive approaches to harness genetic resources Concerning point 1): If an original research paper compares different methods empirically without theoretical considerations on when one or the other method should be better, the methods should be compared with at least five different data sets. The data sets should differ either in crop, genotyping method or its source, for instance from a breeding program or gene bank accessions. Concerning point 2): Manuscripts addressing the use of GS in breeding schemes should illustrate breeding schemes that are run in practice. General ideas about schemes that may be run in the future may be considered as 'Perspective' articles. Conflict of Interest statements: - Topic Editor Valentin Wimmer is affiliated to KWS SAAT SE & Co. KGaA, Germany. - Topic Editor Brian Gardunia is affiliated to Bayer Crop Sciences and has a collaboration with AbacusBio, and is an author on patents with Bayer Crop Sciences. The other Topic Editors did not disclose any conflicts of interest. Image credit: CIMMYT, reproduced under the CC BY-NC-SA 2.0 license



Introduction To Modern Information Retrieval


Introduction To Modern Information Retrieval
DOWNLOAD
Author : Gerard Salton
language : en
Publisher: New York ; Montreal : McGraw-Hill
Release Date : 1983

Introduction To Modern Information Retrieval written by Gerard Salton and has been published by New York ; Montreal : McGraw-Hill this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Computers categories.


Examines Concepts, Functions & Processes of Information Retrieval Systems



Evolution And Selection Of Quantitative Traits


Evolution And Selection Of Quantitative Traits
DOWNLOAD
Author : Bruce Walsh
language : en
Publisher: Oxford University Press
Release Date : 2018-06-21

Evolution And Selection Of Quantitative Traits written by Bruce Walsh and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-21 with Science categories.


Quantitative traits-be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene-usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences.



Quantitative Genetics In Maize Breeding


Quantitative Genetics In Maize Breeding
DOWNLOAD
Author : Arnel R. Hallauer
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-28

Quantitative Genetics In Maize Breeding written by Arnel R. Hallauer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-28 with Science categories.


Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm



Genome Wide Association Studies And Genomic Selection For Crop Improvement In The Era Of Big Data


Genome Wide Association Studies And Genomic Selection For Crop Improvement In The Era Of Big Data
DOWNLOAD
Author : Nunzio D’Agostino
language : en
Publisher: Frontiers Media SA
Release Date : 2023-05-05

Genome Wide Association Studies And Genomic Selection For Crop Improvement In The Era Of Big Data written by Nunzio D’Agostino and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-05 with Science categories.




Genomic Selection In Plants


Genomic Selection In Plants
DOWNLOAD
Author : Ani A. Elias
language : en
Publisher: CRC Press
Release Date : 2022-08-18

Genomic Selection In Plants written by Ani A. Elias and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-18 with Science categories.


Genomic selection (GS) is a promising tool in the field of breeding especially in the era where genomic data is becoming cheaper. The potential of this tool has not been realized due to its limited adaptation in various crops. Marker Assisted Selection (MAS) has been the method of choice for plant breeders while using the genomic information in the breeding pipeline. MAS, however, fails to capture vital minor gene effects while focusing only on the major genes, which is not ideal for breeding advancement especially for quantitative traits such as yield. The main aim of statistical methodologies coming under the umbrella of GS on using the whole genome information is to predict potential candidates for breeding advancement while optimizing the use of resources such as land, manpower, and most importantly time. Lack of proper understanding of the methods and their applications is one of the reasons why breeders shy away from this tool. The book is meant for biologists, especially breeders, and provides a comprehensive idea of the statistical methodologies used in GS, guidance on the choice of models, and design of datasets. The book also encourages the readers to adopt GS by demonstrating the current scenarios of these models in some of the important crops among oilseeds, vegetables, legumes, tuber crops, and cereals. For ease of implementation of GS, the book also provides hands-on scripts on GS data design and modeling in a popular open-source statistical program. Additionally, prospective in GS model development and thereby enhancement in crop improvement programs is discussed.