Geometric Flows And The Geometry Of Space Time

DOWNLOAD
Download Geometric Flows And The Geometry Of Space Time PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Flows And The Geometry Of Space Time book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometric Flows And The Geometry Of Space Time
DOWNLOAD
Author : Vicente Cortés
language : en
Publisher: Springer
Release Date : 2018-12-05
Geometric Flows And The Geometry Of Space Time written by Vicente Cortés and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Mathematics categories.
This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics
Geometric Flows And The Geometry Of Space Time
DOWNLOAD
Author : Vicente Cortés
language : en
Publisher: Birkhäuser
Release Date : 2018-12-23
Geometric Flows And The Geometry Of Space Time written by Vicente Cortés and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-23 with Mathematics categories.
This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics
Extrinsic Geometric Flows
DOWNLOAD
Author : Bennett Chow
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-05-14
Extrinsic Geometric Flows written by Bennett Chow and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-14 with Education categories.
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.
Hamilton S Ricci Flow
DOWNLOAD
Author : Bennett Chow
language : en
Publisher: American Mathematical Society, Science Press
Release Date : 2023-07-13
Hamilton S Ricci Flow written by Bennett Chow and has been published by American Mathematical Society, Science Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-13 with Mathematics categories.
Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.
Mathematical Introduction To General Relativity A Second Edition
DOWNLOAD
Author : Amol Sasane
language : en
Publisher: World Scientific
Release Date : 2024-12-20
Mathematical Introduction To General Relativity A Second Edition written by Amol Sasane and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-20 with Science categories.
The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe. Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to all the 283 exercises are included.The second edition corrects errors from the first edition, and includes 60 new exercises, 10 new remarks, 29 new figures, some of which cover auxiliary topics that were omitted in the first edition.
The Large Scale Structure Of Space Time
DOWNLOAD
Author : S. W. Hawking
language : en
Publisher: Cambridge University Press
Release Date : 1975-02-27
The Large Scale Structure Of Space Time written by S. W. Hawking and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1975-02-27 with Science categories.
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
The Mathematical Structure Of Stable Physical Systems
DOWNLOAD
Author : Dr. Martin Concoyle & G.P. Coatmundi
language : en
Publisher: Trafford Publishing
Release Date : 2014
The Mathematical Structure Of Stable Physical Systems written by Dr. Martin Concoyle & G.P. Coatmundi and has been published by Trafford Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Education categories.
This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.
Differential Geometry In The Large
DOWNLOAD
Author : Owen Dearricott
language : en
Publisher: Cambridge University Press
Release Date : 2020-10-22
Differential Geometry In The Large written by Owen Dearricott and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.
Geometry Of The Fundamental Interactions
DOWNLOAD
Author : M. D. Maia
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-14
Geometry Of The Fundamental Interactions written by M. D. Maia and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-14 with Science categories.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Space Time Matter
DOWNLOAD
Author : Jochen Brüning
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-04-09
Space Time Matter written by Jochen Brüning and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-09 with Mathematics categories.
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian manifolds with special holonomy – Constructions and global properties Contributions to the spectral geometry of locally homogeneous spaces On conformally covariant differential operators and spectral theory of the holographic Laplacian Moduli and deformations Vector bundles in algebraic geometry and mathematical physics Dyson–Schwinger equations: Fix-point equations for quantum fields Hidden structure in the form factors ofN = 4 SYM On regulating the AdS superstring Constraints on CFT observables from the bootstrap program Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities Yangian symmetry in maximally supersymmetric Yang-Mills theory Wave and Dirac equations on manifolds Geometric analysis on singular spaces Singularities and long-time behavior in nonlinear evolution equations and general relativity