Geometrical Dynamics Of Complex Systems

DOWNLOAD
Download Geometrical Dynamics Of Complex Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometrical Dynamics Of Complex Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Geometrical Dynamics Of Complex Systems
DOWNLOAD
Author : Vladimir G. Ivancevic
language : en
Publisher: Taylor & Francis
Release Date : 2006-01-18
Geometrical Dynamics Of Complex Systems written by Vladimir G. Ivancevic and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-18 with Language Arts & Disciplines categories.
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Geometrical Theory Of Dynamical Systems And Fluid Flows Revised Edition
DOWNLOAD
Author :
language : en
Publisher: World Scientific
Release Date : 2009
Geometrical Theory Of Dynamical Systems And Fluid Flows Revised Edition written by and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Fluid dynamics categories.
"This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems. In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics."-
Dynamical Systems In Neuroscience
DOWNLOAD
Author : Eugene M. Izhikevich
language : en
Publisher: MIT Press
Release Date : 2010-01-22
Dynamical Systems In Neuroscience written by Eugene M. Izhikevich and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-22 with Medical categories.
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Dynamics Of Complex Systems
DOWNLOAD
Author : Yaneer Bar-yam
language : en
Publisher: CRC Press
Release Date : 2019-03-04
Dynamics Of Complex Systems written by Yaneer Bar-yam and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-04 with Mathematics categories.
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.
Complex Nonlinearity
DOWNLOAD
Author : Vladimir G. Ivancevic
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-05-31
Complex Nonlinearity written by Vladimir G. Ivancevic and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-05-31 with Science categories.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
Geometry From Dynamics Classical And Quantum
DOWNLOAD
Author : José F. Cariñena
language : en
Publisher: Springer
Release Date : 2016-09-10
Geometry From Dynamics Classical And Quantum written by José F. Cariñena and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-10 with Science categories.
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.
Complex Sports Biodynamics
DOWNLOAD
Author : Tijana T. Ivancevic
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-28
Complex Sports Biodynamics written by Tijana T. Ivancevic and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-28 with Technology & Engineering categories.
What are motor abilities of Olympic champions? What are essential psyc- logical characteristics of Mark Spitz, Carl Lewis and Roger Federer? How to discover and maximally develop motor intelligence? How to develop - domitable will power of Olympic champions? What are the secrets of sel- tion for the future Olympic champions? Does for every sport exist a unique model of an Olympic champion? This book gives a modern scienti?c answers to the above questions. Its purpose is to give you the answer to everything you ever wanted to ask about sport champions, but didn’t know who or how to ask. In particular, the purpose of this book is to give you the answer to eve- thing you ever wanted to ask about advanced tennis, but didn’t know who or how to ask. Its aim is to dispel classical myths of a “biomechanically sound” serve, forehand, and backhand, as well as provide methods for developing superior tennis weapons,a lightning–fast game,and unrivaled mental speed and strength – essential qualities of a future tennis champion.
Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics
DOWNLOAD
Author : Marco Pettini
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-14
Geometry And Topology In Hamiltonian Dynamics And Statistical Mechanics written by Marco Pettini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-14 with Mathematics categories.
Itisaspecialpleasureformetowritethisforewordforaremarkablebookbya remarkableauthor.MarcoPettiniisadeepthinker,whohasspentmanyyears probing the foundations of Hamiltonian chaos and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. Itisinparticularthequalityofmindoftheauthorandhisdeepphysical,as well as mathematical insights which make this book so special and inspiring. It is a “must” for those who want to venture into a new approach to old problems or want to use new tools for new problems. Although topology has penetrated a number of ?elds of physics, a broad participationoftopologyintheclari?cationandprogressoffundamentalpr- lems in the above-mentioned ?elds has been lacking. The new perspectives topology gives to the above-mentioned problems are bound to help in their clari?cation and to spread to other ?elds of science. The sparsity of geometric thinking and of its use to solve fundamental problems, when compared with purely analytical methods in physics, could be relieved and made highly productive using the material discussed in this book. It is unavoidable that the physicist reader may have then to learn some new mathematics and be challenged to a new way of thinking, but with the author as a guide, he is assured of the best help in achieving this that is presently available.
Unifying Themes In Complex Systems
DOWNLOAD
Author : Ali A. Minai
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-02
Unifying Themes In Complex Systems written by Ali A. Minai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-02 with Science categories.
In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. "Unifying Themes in Complex Systems" is a well established series of carefully edited conference proceedings that serve the purpose of documenting and archiving the progress of cross-fertilization in this field. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex systems and its application for the betterment of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book Series in conjunction with Springer Publishers.
The Dynamics Of Complex Urban Systems
DOWNLOAD
Author : Sergio Albeverio
language : en
Publisher: Physica
Release Date : 2010-10-19
The Dynamics Of Complex Urban Systems written by Sergio Albeverio and has been published by Physica this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-19 with Business & Economics categories.
This book contains the contributions presented at the international workshop "The Dynamics of Complex Urban Systems: an interdisciplinary approach" held in Ascona, Switzerland in November 2004. Experts from several disciplines outline a conceptual framework for modeling and forecasting the dynamics of both growth-limited cities and megacities. Coverage reflects the various interdependencies between structural and social development.